African Archaeological Review

, Volume 34, Issue 1, pp 93–119 | Cite as

The Technology of the Early Oakhurst Lithic Techno-Complex from Klipdrift Cave, Southern Cape, South Africa

  • Kokeli P. Ryano
  • Sarah Wurz
  • Karen L. van Niekerk
  • Christopher S. Henshilwood
Original Article


The analysis of the lithics recovered from the layers dating between cal bp 10,700 and cal bp 13,700 at Klipdrift Cave, southern Cape, South Africa, provides new information on the Oakhurst techno-complex. A comparison with contemporary sites such as Matjes River Rock Shelter indicates not only technological similarities, but also unexpected differences. The Klipdrift Cave Oakhurst shares many characteristics typical of this techno-complex from the southern Cape, for example, in the dominance of quartzite, irregular and unstandardised flakes; the occurrence of irregular cores; and typical large side and end scrapers. It differs from most coastal Oakhurst sites however, in the more intensive exploitation of quartz, and the presence of a blade component, especially in the lowermost layers. Palaeoenvironmental data, derived from stable isotope analysis of ostrich eggshell, suggest that it was dry in this region during this time period. This was partially a result of the colder conditions that prevailed during the Younger Dryas. The lithic technological production techniques are stable at Klipdrift Cave during the period that the site was occupied from cal bp 13,700 to cal bp 10,700. Our data suggest that the lithic technology did not change in response to possible climatic variability.


Klipdrift Cave Oakhurst techno-complex Southern Cape South Africa 


L'analyse des ensembles lithiques provenant des dépôts datés entre 13 700 et 10 760 ans BP à Klipdrift Cave, dans la région sud du Cap en Afrique du Sud, fournit de nouvelles informations sur l'industrie Oakhurst. La comparaison avec des sites contemporains tels que Matjes River Rock Shelter montre des similarités technologiques, mais aussi des différences inattendues. L'Oakhurst de Klipdrift Cave présente de nombreuses caractéristiques typiques de ce techno-complexe du sud du Cap, par exemple la prédominance de quartzite, d’éclats irréguliers et non-standardisés, la présence de nucléus irréguliers, ainsi que de grands grattoirs. Cette industrie diffère cependant de la plupart des sites côtiers Oakhurst par une exploitation du quartz plus intense et la présence de lames, et ce, particulièrement dans les couches les plus inférieures. Les données paléoenvironnementales, issues de l'analyse des isotopes stables sur des coquilles d'autruche, suggèrent un climat sec pour la région pour cette même période. Ceci s’explique partiellement comme une conséquence des conditions froides ayant prévalu dans la région au cours du Dryas inférieur. Les techniques mises en place pour la production lithique sont stables à Klipdrift Cave tout au long de la période d’occupation du site, c'est à dire entre 13 700 et 10 760 ans BP. Nos données suggèrent donc que les traditions technologiques n'ont pas changé en réponse aux possibles variations climatiques.



Grants to CSH, for the excavation and analyses of the KDC site, came from a National Research Foundation (NRF)/Department of Science and Technology funded Chair at the University of the Witwatersrand, South Africa, and from the University of Bergen, Norway. The work of S. Wurz was also supported by the NRF. Any opinion, finding and conclusion or recommendation expressed in this material is that of the author(s), and the NRF does not accept any liability in this regard. The Palaeontological Scientific Trust (PAST) is furthermore thanked for financial support. Thanks go to Petro Keene and Samantha Mienies for their assistance in accessing the materials and preliminary sorting. We are grateful for the assistance of Raeesa Ganey (School of Statistics & Actuarial Sciences, Wits) and Silje Bentsen (School of Geography, Archaeology & Environmental Studies, Wits) with the statistical procedures. We thank Beta Analytic for their generous offer to recalibrate all the dates used in this manuscript. We also acknowledge insightful comments from anonymous reviewers.


  1. Abell, P. I., & Plug, I. (2000). The Pleistocene/Holocene transition in South Africa: Evidence for the Younger Dryas event. Global and Planetary Change, 26, 173–179.CrossRefGoogle Scholar
  2. Ambrose, S. H., & Lorenz, K. (1990). Social and ecological models for the Middle Stone Age of Southern Africa. In P. Mellars (Ed.), The emergence of modern humans: An archaeological perspective (pp. 33–33). Ithaca: Cornel University Press.Google Scholar
  3. Arnold, K. (2009). Experimental archaeology and the denticulate Mousterian. Papers from the Institute of Archaeology, 2, 2–7.CrossRefGoogle Scholar
  4. Arzarello, M., & Peretto, C. (2010). Out of Africa: The first evidence of Italian Peninsula occupation. Quaternary International, 223–224, 65–70.Google Scholar
  5. Badenhorst, S., & Plug, I. (2012). The faunal remains from the Middle Stone Age levels of Bushman Rock Shelter in South Africa. South African Archaeological Bulletin, 67(195), 16–31.Google Scholar
  6. Bamforth, D. B. (1986). Technological efficiency and tool curation. American Antiquity, 51(01), 38–50.Google Scholar
  7. Bar-Yosef, O., & Kuhn, S. L. (1999). The big deal about blades: Laminar technologies and human evolution. American Anthropologist, 101(2), 322–338.CrossRefGoogle Scholar
  8. Bar-Yosef, O., & Van Peer, P. (2009). The chaîne opératoire approach in Middle Paleolithic archaeology. Current Anthropology, 50(1), 103–131.CrossRefGoogle Scholar
  9. Barham, L. S. (1987). The bipolar technique in southern Africa: A replication experiment. South African Archaeological Bulletin, 42(145), 45–50.Google Scholar
  10. Beyries, S. (1988). Functional variability of lithic sets in the Middle Paleolithic. In H. Dibble & A. Montet-White (Eds.), Upper Pleistocene prehistory of Western Eurasia (pp. 213–223). Philadelphia: University of Pennsylvania.Google Scholar
  11. Binneman, J. (1983). Microscopic examination of a hafted tool. South African Archaeological Bulletin, 38(138), 93–95.CrossRefGoogle Scholar
  12. Binneman, J., & Deacon, J. (1986). Experimental determination of use wear on stone adzes from Boomplaas Cave, South Africa. Journal of Archaeological Science, 13, 219–228.CrossRefGoogle Scholar
  13. Bousman, C. B. (2005). Coping with risk: Later Stone Age technological strategies at Blydefontein Rock Shelter, South Africa. Journal of Anthropological Archaeology, 24(3), 193–226.Google Scholar
  14. Chase, B. M., & Meadows, M. E. (2007). Late Quaternary dynamics of southern Africa’s winter rainfall zone. Earth-Science Reviews, 84, 103–138.CrossRefGoogle Scholar
  15. Clark, J. D. (1958). Some Stone Age woodworking tools in southern Africa. South African Archaeological Bulletin, 13(52), 144–152.CrossRefGoogle Scholar
  16. Cochrane, G. W. G. (2008). A comparison of Middle Stone Age and Later Stone Age blades from South Africa. Journal of Field Archaeology, 33(4), 429–448.CrossRefGoogle Scholar
  17. Cohen, A. L., Parkington, J. E., Brundrit, G. B., & van der Merwe, N. J. (1992). A Holocene marine climate record in mollusc shells from the southwest African coast. Quaternary Research, 38, 379–385.CrossRefGoogle Scholar
  18. Conard, N. J., Soressi, M., Parkington, J. E., Wurz, S., & Yates, R. (2004). A unified lithic taxonomy based on patterns of core reduction. South African Archaeological Bulletin, 59(179), 13–17.CrossRefGoogle Scholar
  19. Dansgaard, W., White, W. J. C., & Johnsen, S. J. (1989). The abrupt termination of the Younger Dryas climate event. Nature, 339, 532–534.CrossRefGoogle Scholar
  20. de la Peña, P. (2015). The interpretation of bipolar knapping in African Stone Age studies. Current Anthropology, 56(6), 911–923.CrossRefGoogle Scholar
  21. Deacon, H. J. (1976). Where hunters gathered: A study of Holocene Stone Age people in the eastern Cape (p. 1). Claremont: South African Archaeological Society Monograph.Google Scholar
  22. Deacon, H. J. (1979). Excavations at Boomplaas—A sequence through the Upper Pleistocene and Holocene in South Africa. World Archaeology, 10(3), 241–257.CrossRefGoogle Scholar
  23. Deacon, J. (1982). The Later Stone Age in the southern Cape, South Africa. PhD dissertation, University of Cape Town.Google Scholar
  24. Deacon, J. (1984a). Later Stone Age people and their descendants in southern Africa. In R. G. Klein (Ed.), Southern African prehistory and paleoenvironments (pp. 221–328). Rotterdam: A. A. Balkema.Google Scholar
  25. Deacon, J. (1984b). The Later Stone Age of southernmost Africa. In BAR International Series 213. Oxford: Archaeopress.Google Scholar
  26. Deacon, H. J., & Deacon, J. (1980). The hafting, function and distribution of small convex scrapers with an example from Boomplaas Cave. South African Archaeological Bulletin, 35(131), 31–37.CrossRefGoogle Scholar
  27. Deacon, H. J., & Deacon, J. (1999). Human beginnings in South Africa: Uncovering the secrets of the Stone Age. Cape Town: D. Phillip Publishers.Google Scholar
  28. Döckel, W. (1998). Re-investigation of the Matjes River Rock Shelter. MA thesis, University of Stellenbosch.Google Scholar
  29. Faith, J. T. (2013). Ungulate diversity and precipitation history since the Last Glacial Maximum in the western Cape, South Africa. Quaternary Science Reviews, 68, 191–199.CrossRefGoogle Scholar
  30. Gaertner, L. M. (1994). Determining the function of Dalton adzes from northeast Arkansas. Lithic Technology, 19(2), 97–109.CrossRefGoogle Scholar
  31. Goodwin, A. J. H., & van Riet Lowe, C. (1929). The Stone Age cultures of South Africa. Annals of the South African Museum, 27.Google Scholar
  32. Goodyear, A. C. (1982). The chronological position of the Dalton horizon in the southeastern United States. American Antiquity, 47, 382–395.CrossRefGoogle Scholar
  33. Gould, R. A. (1980). Living Archaeology. Cambridge: Cambridge University Press.Google Scholar
  34. Henshilwood, C. S., van Niekerk, K. L., Wurz, S., Delagnes, A., Armitage, S. J., Rifkin, R. F., Douze, K., Keene, P., Haalan, M. M., Reynard, J., Discamps, E., & Mienies, S. S. (2014). Klipdrift shelter, southern Cape, South Africa: Preliminary report on the Howiesons Poort layers. Journal of Archaeological Science, 45, 284–303.CrossRefGoogle Scholar
  35. Hogg, A. G., Hua, Q., Blackwell, P. G., Niu, M., Buck, C. E., Guilderson, T. P., Heaton, T. J., Palmer, J. G., Reimer, P. J., Reimer, R. W., Turney, C. S. M., & Zimmerman, S. R. H. (2013). SHCal13 southern hemisphere calibration, 0-50,000 years cal BP. Radiocarbon, 55(4), 1889–1903.CrossRefGoogle Scholar
  36. Inizan, M.-L., Reduron-Ballinger, M., Roche, H., & Tixier, J. (1999). Technology and terminology of knapped stone. Nanterre: CREP.Google Scholar
  37. Klein, R. G. (1972a). Preliminary report on the July through September 1970 excavations at Nelson Bay Cave, Plettenberg Bay (Cape Province, South Africa). Palaeoecology of Africa, 6, 177–208.Google Scholar
  38. Klein, R. G. (1972b). The Late Quaternary mammalian fauna of Nelson Bay Cave (Cape Province, South Africa): Its implications for megafaunal extinctions and environmental and cultural change. Quaternary Research, 2, 135–142.CrossRefGoogle Scholar
  39. Lombard, M., Wadley, L., Deacon, J., Wurz, S., Parsons, I., Mohapi, M., Swart, J., & Mitchell, P. (2012). South African and Lesotho Stone Age sequence updated (I). South African Archaeological Bulletin, 67(195), 120–144.Google Scholar
  40. Mitchell, P. J. (1993). Archaeological investigations at two Lesotho Rock-shelters: Terminal Pleistocene/Early Holocene assemblages from Ha Makotoko and Ntloana Tsoana. Proceedings of the Prehistoric Society, 59, 39–60.CrossRefGoogle Scholar
  41. Mitchell, P. J. (2013). Southern African hunter-gatherers of the last 25,000 years ago. In P. Mitchell & P. Lane (Eds.), The handbook of African archaeology (pp. 473–488). Oxford: Oxford University Press.Google Scholar
  42. Mitchell, P., & Arthur, C. (2012). The archaeology of the Metolong Dam, Lesotho. The Digging Stick, 29(1), 1–5.Google Scholar
  43. Odell, G. H. (1981). The morphological express at function junction: Searching for meaning in lithic tool types. Journal of Anthropological Research, 37, 319–342.CrossRefGoogle Scholar
  44. Odell, G. H. (2003). Lithic analysis. New York: Springer Science Business Media Inc..Google Scholar
  45. Orton, J. (2004). The quartz conundrum: Understanding the role of quartz in the composition of late Pleistocene and Holocene lithic assemblages from the Verlorenvlei area, western Cape. MA thesis, University of Cape Town.Google Scholar
  46. Parkington, J., Cartwright, C., Cowling, R. M., Baxter, A., & Meadows, M. (2000). Palaeovegetation at the last glacial maximum in the western cape, South Africa: Wood charcoal and pollen evidence from Elands Bay Cave. South African Journal of Science, 96, 543–546.Google Scholar
  47. Perreault, C., Brantingham, P. J., Kuhn, S. L., Wurz, S., & Gao, X. (2013). Measuring the complexity of lithic technology. Current Anthropology, 54(S8), S397–S406.CrossRefGoogle Scholar
  48. Quick, L. J. (2013). Late Quaternary palaeoenvironments of the southern Cape, South Africa: Palynological evidence from three coastal wetlands. PhD dissertation, University of Cape Town.Google Scholar
  49. Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk, R. C., et al. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon, 55(4), 1869–1887.CrossRefGoogle Scholar
  50. Roberts, P. (2013). Stable carbon and oxygen isotope analysis of ostrich eggshell (OES) samples from LSA and MSA levels at Blombos Cave, Klipdrift Shelter, and Klipdrift Cave (South Africa). MSc thesis, University of Oxford.Google Scholar
  51. Ryano, K. P. (2014). The Later Stone Age in the southern Cape, South Africa, during the Terminal Pleistocene/Early Holocene with a focus on Klipdrift Cave. PhD dissertation, University of the Witwatersrand.Google Scholar
  52. Sampson, C. G. (1974). The Stone Age archaeology of southern Africa. New York: Academic Press.Google Scholar
  53. Schweitzer, F. R., & Wilson, M. L. (1982). Byneskranskop 1. A Late Quaternary living site in the southern Cape Province, South Africa. Annals of the South African Museum, 88, 1–203.Google Scholar
  54. Scott, L., Steenkamp, M., & Beaumont, P. B. (1995). Palaeoenvironmental conditions in South Africa at the Pleistocene-Holocene transition. Quaternary Science Reviews, 14, 937–947.CrossRefGoogle Scholar
  55. Sellet, F. (1993). Chaîne opératoire: The concept and its application. Lithic Technology, 18(1&2), 106–112.Google Scholar
  56. Soressi, M., & Geneste, J.-M. (2011). The history and efficacy of the chaîne opératoire approach to lithic analysis: Studying techniques to reveal past societies in an evolutionary perspective. PaleoAnthropology, 2011, 334–350.Google Scholar
  57. Thackeray, J. F., & Scott, L. (2006). The Younger Dryas in the Wonderkrater sequence, South Africa?: Scientific notes. Annals of the Transvaal Museum, 43, 111–112.Google Scholar
  58. Villa, P., Soriano, S., Tsanova, T., Degano, I., Higham, T. F. G., d’Errico, F., Backwell, L., Lucejko, J. J., Colombini, M. P., & Beaumont, P. B. (2012). Border Cave and the beginning of the Later Stone Age in South Africa. Proceedings of the National Academy of Sciences, 109(33), 13208–13213.CrossRefGoogle Scholar
  59. Wadley, L. (1986). A social and ecological interpretation of the Later Stone Age in the southern Transvaal. PhD thesis. Johannesburg: University of the Witwatersrand.Google Scholar
  60. Wadley, L. (1987). Later Stone Age hunters and gatherers of the southern Transvaal: Social and ecological interpretations. Oxford: British Archaeological Reports International Series 380.Google Scholar
  61. Wadley, L. (1989). Legacies from the Later Stone Age. South African Archaeological Society Goodwin Series, 6, 42–53.Google Scholar
  62. Wadley, L. (1993). The Pleistocene Later Stone Age south of the Limpopo River. Journal of World Prehistory, 7, 243–296.CrossRefGoogle Scholar
  63. Wadley, L. (2000). The early Holocene layers of Rose Cottage Cave, Eastern Free State: Technology, spatial patterns and environment. South African Archaeological Bulletin, 55(171), 18–31.CrossRefGoogle Scholar
  64. Wadley, L. (2013). Theoretical frameworks for understanding African hunter-gatherers. In P. Mitchell & P. Lane (Eds.), The handbook of African archaeology (pp. 355–366). Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Kokeli P. Ryano
    • 1
  • Sarah Wurz
    • 2
    • 3
  • Karen L. van Niekerk
    • 3
    • 2
  • Christopher S. Henshilwood
    • 2
    • 3
  1. 1.Department of History, School of HumanitiesThe University of DodomaDodomaTanzania
  2. 2.Evolutionary Studies InstituteUniversity of the WitsJohannesburgSouth Africa
  3. 3.Department of Archaeology, History, Cultural Studies and ReligionUniversity of BergenBergenNorway

Personalised recommendations