African Archaeological Review

, Volume 32, Issue 4, pp 669–700 | Cite as

Late Holocene Stalagmite and Tufa Climate Records for Wonderwerk Cave: Relationships Between Archaeology and Climate in Southern Africa

  • George A. Brook
  • L. Bruce Railsback
  • Louis Scott
  • Ny Riavo G. Voarintsoa
  • Fuyuan Liang
Original Article

Abstract

Horizontal cores from a large stalagmite and two tufa deposits in the entrance to Wonderwerk Cave, South Africa, dated by radiocarbon methods, have provided climate proxy data on late Holocene environments near the cave. The δ18O and δ13C time series from stalagmite Core WW1–3 and tufa Core WW3 correlate well with isotope records for other sites in the summer rainfall zone of southern Africa and suggest that late Holocene warm periods in the Northern Hemisphere, including the Medieval Warm period, Roman Warm period, and Minoan Warm period, were times of increased moisture in this rainfall zone. In contrast, late Holocene cold intervals in the Northern Hemisphere, including the Dark Ages Cold period and Sub-Atlantic Cold period, were times of drier climate in the summer rainfall zone. Comparison of the Wonderwerk records with information on human settlement patterns, agricultural expansion or decline, and population growth or decline, shows that growth occurred preferentially during wetter climate periods and declines, including the abandonment of the important town of Mupungubwe in the Shashe-Limpopo area of northeast South Africa and the fall of Great Zimbabwe, which occurred during periods of low precipitation.

Keywords

Stalagmite Tufa Climate change Archaeology Isotopes Cave 

Résumé

Une grande stalagmite venant de la grotte de Wonderwerk, en Afrique du Sud, a été carottée horizontalement et est comparée avec deux autres dépôts de tuf venant de la meme grotte pour comprendre la variation climatique aux alentours de la grotte durant la fin de l’Holocene. Ces archives geologiques ont été datés par la methode 14C. Les variations isotopiques, particulierement δ18O et δ13C de la carotte WW1–3 et celles du tuf WW3, presentent une bonne resemblance avec d’autres donnees paleoclimatiques obtenues des autres site climatiques de la zone chaude et humide de l’Afrique australe. La comparaison suggere que la periode chaude de la fin de l’Holocene connue dans l’hemisphere nord, comme la période chaude médiévale, Roman Période Chaude, et Minoan Période Chaude, correspond a une periode tres humide aux alentours de Wonderwerk. Par contre, les periodes froides de la meme interval, comprenant Dark Ages Période Froide et Sous-Atlantique Période Froide, correspondent a des periodes seches a Wonderwerk. Il est a noter que les types d'établissements humains, l'expansion ou le déclin agricole, et la croissance de la population ou de déclin, montre que la croissance ont eu lieu préférentiellement pendant les périodes et les baisses de climat plus humide, y compris l'abandon de l'importante ville de Mupungubwe dans la zone Shashe-Limpopo du nord-est en Afrique du Sud et la chute du Grand Zimbabwe, a eu lieu pendant les périodes de faibles précipitations.

References

  1. Albrecht, M., Berke, H., Eichhorn, B., Frank, T., Kuper, R., Prill, S., Vogelsang, R., & Wenzel, S. (2001). Oruwanje 95/1: A late Holocene stratigraphy in northwestern Namibia. Cimbebasia, 17, 1–22.Google Scholar
  2. Alley, R. B. (2000). The Younger Dryas cold interval as viewed from central Greenland. Quaternary Science Reviews, 19, 213–226.CrossRefGoogle Scholar
  3. Alley, R. B. (2004). GISP2 ice core temperature and accumulation data (IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2004-013). Boulder CO, USA: NOAA/NGDC Paleoclimatology Program.Google Scholar
  4. Beaumont, P. B. (1990). Wonderwerk Cave. In P. B. Beaumont & D. Morris (Eds.), Guide to archaeological sites in the Northern Cape (Southern African Association of Archaeologists Post-conference Excursion, September 9–13, 1990), pp. 101–134. Kimberley, South Africa: McGregor Museum.Google Scholar
  5. Beaumont, P. B., & Vogel, J. C. (2006). On a timescale for the past million years of human history in central South Africa. South African Journal of Science, 102, 217–228.Google Scholar
  6. Beck, J. W., Richards, D. A., Edwards, R. L., Silverman, B. W., Smart, P. L., Donahue, D. J., Hererra-Osterheld, S., Burr, G. S., Calsoyas, L., Jull, A. J., & Biddulph, D. (2001). Extremely large variations of atmospheric 14C concentration during the last glacial period. Science, 292(5526), 2453–2458.CrossRefGoogle Scholar
  7. Bowling, D. R., Ballantyne, A. P., Miller, J. B., Burns, S. P., Conway, T. J., Menzer, O., Stephens, B. B., & Vaughn, B. H. (2014). Ecological processes dominate the 13C land disequilibrium in a Rocky Mountain subalpine forest. Global Biogeochemical Cycles, 28, 352–370.CrossRefGoogle Scholar
  8. Bowman, S. (1990). Interpreting the past: Radiocarbon dating. Berkeley: University of California Press/British Museum.Google Scholar
  9. Brook, G. A. (1999). Arid zone paleoenvironmental records from cave speleothems. In: A. K. Singhvi & E. Derbyshire (Eds.), Paleoenvironmental reconstruction of the arid lands (pp. 217–262). New Delhi/New York: Oxford & IBH Publishing Co. Pvt. Ltd.Google Scholar
  10. Brook, G. A., Scott, L., Railsback, L. B., & Goddard, E. A. (2010). A 35 ka pollen and isotope record of environmental change along the southern margin of the Kalahari from a stalagmite and animal dung deposits in Wonderwerk Cave, South Africa. Journal of Arid Lands, 74, 870–884.CrossRefGoogle Scholar
  11. Brook, G. A., Cherkinsky, A., Railsback, L. B., Marais, E., & Hipondoka, M. H. T. (2013). Radiocarbon dating of organic residue and carbonate in stromatolites from Etosha Pan, Namibia: The radiocarbon reservoir effect, correction of published carbonate ages, and evidence of a >8 m deep lake during the Late Pleistocene. Radiocarbon, 55, 1156–1163.CrossRefGoogle Scholar
  12. Burrough, S. L., & Thomas, D. S. G. (2013). Central southern Africa at the time of the African Pumid period: A new analysis of Holocene palaeoenvironmental and palaeoclimate data. Quaternary Science Reviews, 80, 29–46.CrossRefGoogle Scholar
  13. Butzer, K. W. (1984a). Archaeogeology and Quaternary environment in the interior of southern Africa. In R. G. Klein (Ed.), Southern African prehistory and palaeoenvironments (pp. 1–64). Rotterdam: Balkema.Google Scholar
  14. Butzer, K. W. (1984b). Late Quaternary environments in South Africa. In J. C. Vogel (Ed.), Late Cainozoic palaeoclimates of the Southern Hemisphere (pp. 235–264). Rotterdam: Balkema.Google Scholar
  15. Butzer, K. W., Fock, G. J., Stuckenrath, R., & Zilch, A. (1978). Palaeohydrology of late Pleistocene Lake Alexandersfontein, Kimberley, South Africa. Nature, 243, 328–331.CrossRefGoogle Scholar
  16. Cerling, T. E. (1984). The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters, 71, 229–240.CrossRefGoogle Scholar
  17. Chase, B. M., & Meadows, M. E. (2007). Late Quaternary dynamics of southern Africa’s winter-rainfall zone. Earth-Science Reviews, 84, 103–138.CrossRefGoogle Scholar
  18. Chase, B. M., Meadows, M. E., Scott, L., Thomas, D. S. G., Marais, E., Sealy, J., & Reimer, P. J. (2009). A record of rapid Holocene climate change preserved in hyrax middens from southwestern Africa. Geology, 37, 703–706.CrossRefGoogle Scholar
  19. Chazan, M., Avery, M. D., Bamford, M. K., Berna, F., Brink, J., Holt, S., Fernandez-Jalvo, Y., Goldberg, P., Matmon, A., Porat, N., Ron, H., Rossouw, L., Scott, L., & Horwitz, L. K. (2012). The Oldowan horizon in Wonderwerk Cave (South Africa): Archaeological, geological, paleontological and paleoclimatic evidence. Journal of Human Evolution, 63, 859–866.CrossRefGoogle Scholar
  20. Cherkinsky, A., Culp, R. A., Dvoracek, D. K., & Noakes, J. E. (2010). Status of AMS facility at CAIS, University of Georgia. Nuclear Instruments and Methods in Physical Research B, 268, 867.CrossRefGoogle Scholar
  21. Debajyoti, P., & Skrzypek, G. (2007). Assessment of carbonate-phosphoric acid analytical technique performed using GasBench II in continuous flow isotope ratio mass spectrometry. International Journal of Mass Spectrometry, 262, 180–186.CrossRefGoogle Scholar
  22. Genty, D., & Massault, M. (1997). Bomb 14C recorded in laminated speleothems: Calculations of dead carbon proportion. Radiocarbon, 39(1), 33–48.Google Scholar
  23. Genty, D., & Massault, M. (1999). Carbon transfer dynamics from bomb 14C and δ13C time series of a laminated stalagmite from SW France—Modeling and comparison with other stalagmite records. Geochimica et Cosmochimica Acta, 63(10), 1537–1548.CrossRefGoogle Scholar
  24. Genty, D., Massault, M., Gilmour, M., Baker, A., Verheyden, S., & Kepens, E. (1999). Calculation of past dead carbon proportion and variability by the comparison of AMS 14C and TIMS U/Th ages on two Holocene stalagmites. Radiocarbon, 41(3), 251–270.Google Scholar
  25. Genty, D., Baker, A., Massault, M., Proctor, C., Gilbour, M., Pons-Branchu, E., & Hamelind, B. (2001). Dead carbon in stalagmites: Carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems. Geochimica et Cosmochimica Acta, 65(20), 3443–3457.CrossRefGoogle Scholar
  26. Hodgins, G., Brook, G. A., & Marais, E. (2007). Bomb-spike dating of a mummified baboon in Ludwig Cave, Namibia. International Journal of Speleology, 36(1), 27–34.CrossRefGoogle Scholar
  27. Hoffmann, D. L., Beck, J. W., Richards, D. A., Smart, P. L., Singarayer, J. S., Ketchmark, T., & Hawkesworth, C. J. (2010). Towards radiocarbon calibration beyond 28 ka using speleothems from the Bahamas. Earth and Planetary Science Letters, 289(1–2), 1–10.CrossRefGoogle Scholar
  28. Hogg, A. G., Hua, Q., Blackwell, P. G., Buck, C. E., Guildersno, T. P., Heaton, T. J., Niu, M., Palmer, J. G., Reimer, P. J., Reimer, R. W., Turney, C. S. M., & Zimmerman, S. (2013). SHCal13 Southern Hemisphere Calibration, 0–50,000 years cal BP. Radiocarbon, 55(4), 1889–1903.CrossRefGoogle Scholar
  29. Holmgren, K., & Öberg, H. (2006). Climate change in southern and eastern Africa during the past millennium and its implications for societal development. Environment, Development and Sustainability, 8, 185–195.CrossRefGoogle Scholar
  30. Holmgren, K., Karlén, W., Lauritzen, S. E., Lee-Thorp, J. A., Partridge, T. C., Piketh, S., Repinski, P., Stevenson, C., Svanered, O., & Tyson, P. D. (1999). A 3000-year high-resolution record of palaeoclimate for north-eastern South Africa. The Holocene, 9(3), 295–309.CrossRefGoogle Scholar
  31. Holmgren, K., Lee-Thorp, J. A., Cooper, G. R. J., Lundblad, K., Partridge, T. C., Scott, L., Sithaldeen, R., Talma, A. S., & Tyson, P. D. (2003). Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa. Quaternary Science Reviews, 22, 2311–2326.CrossRefGoogle Scholar
  32. Huffman, T. N. (1996). Archaeological evidence for climatic change during the last 2000 years in Southern Africa. Quaternary International, 33, 55–60.CrossRefGoogle Scholar
  33. Huffman, T. N. (2008). Climate change during the Iron Age in the Shashe-Limpopo Basin, southern Africa. Journal of Archaeological Science, 35, 2032–2047.CrossRefGoogle Scholar
  34. Humlum, O., Solheim, J.-E., & Stordahl, K. (2011). Identifying natural contributions to late Holocene climate change. Global and Planetary Change, 79, 145–156.CrossRefGoogle Scholar
  35. Kent, L. E. (1980). Stratigraphy of South Africa. Part I. Geological Survey of South Africa Handbook, 8, 1–690.Google Scholar
  36. Kinahan, J. (1991). Pastoral nomads of the central Namib Desert: The people history forgot. Windhoek, Namibia: Namibia Archaeological Trust.Google Scholar
  37. Lee-Thorp, J. A., & Talma, A. S. (2000). Stable light isotopes and environments in the southern African Quaternary and late Pliocene. In T. C. Partridge & R. R. Maud (Eds.), The Cenozoic of Southern Africa. Oxford Monographs on Geology and Geophysics No. 40 (pp. 236–251). Oxford: Oxford University Press.Google Scholar
  38. Manning, M. R., & Melhuish, W. H. (1994). Atmospheric 14C record from Wellington. In Trends: A compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.AGoogle Scholar
  39. Manning, M. R., Lowe, D. C., Melhuish, W. H., Sparks, R. J., Wallace, G., Brenninkmeijer, C. A. M., & McGill, R. C. (1990). The used of radiocarbon measurements in atmospheric studies. Radiocarbon, 32, 37–58.Google Scholar
  40. McDermott, F. (2004). Palaeo-climate reconstruction from stable isotope variations in speleothems: A review. Quaternary Science Reviews, 23, 901–918.CrossRefGoogle Scholar
  41. Monger, H. C., Cole, D. R., Gish, J. W., & Giordano, T. H. (1998). Stable carbon and oxygen isotopes in Quaternary soil carbonates as indicators of ecogeomorphic changes in the northern Chihuahuan Desert, USA. Geoderma, 82, 137–172.CrossRefGoogle Scholar
  42. Moyes, H., Awe, J., Brook, G. A., & Webster, J. (2009). The ancient Maya drought cult: Late Classic cave use in Belize. Latin American Antiquity, 20, 175–206.Google Scholar
  43. Mucina, L., & Rutherford, M. C. (2006). The vegetation of South Africa, Lesotho and Swaziland. Strelitzia, 19. Pretoria: South African National Biodiversity Institute.Google Scholar
  44. New, M., Hulme, M., & Jones, P. (1999). Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. Journal of Climate, 12, 829–856.CrossRefGoogle Scholar
  45. Nicholson, S. E. (1981). The historical climatology of Africa. In T. M. L. Wigley, M. J. Ingram, & G. Farmer (Eds.), Climate and history (pp. 249–270). Cambridge: Cambridge University Press.Google Scholar
  46. Nicholson, S. E. (2000). The nature of rainfall variability over Africa on time scales of decades to millennia. Global and Planetary Change, 26, 137–158.CrossRefGoogle Scholar
  47. Noronha, A. L., Johnson, K. R., Hu, C., Ruan, J., Southon, J. R., & Ferguson, J. E. (2014). Assessing influences on speleothem dead carbon variability over the Holocene: Implications for speleothem-based radiocarbon calibration. Earth and Planetary Science Letters, 394, 20–29.CrossRefGoogle Scholar
  48. Partin, J. W., Cobb, K. M., & Banner, J. L. (2008). Climate variability recorded in tropical and sub-tropical speleothems. PAGES News, 16(3), 9–10.Google Scholar
  49. Pleurdeau, D., Imalwa, E., Détroit, F., Lesur, J., Veldman, A., Bahain, J.-J., & Marais, E. (2012). “Of Sheep and Men”: Earliest direct evidence of caprine domestication in southern Africa at Leopard Cave (Erongo, Namibia). PloS One, 7(7), e40340.CrossRefGoogle Scholar
  50. Quade, J. (2004). Isotopic records from ground-water and cave speleothem calcite in North America. In A. Gillespie, S. C. Porter, & B. F. Atwater (Eds.), Developments in Quaternary science (Vol. 1, pp. 205–219). New York: Elsevier Science.Google Scholar
  51. Railsback, L. B., Akers, P. D., Wang, L., Holdridge, G. A., & Voarintsoa, N. R. (2013). Layer-bounding surfaces in stalagmites as keys to better paleoclimatological histories and chronologies. International Journal of Speleology, 42(3), 167–180.CrossRefGoogle Scholar
  52. Revelle, R., & Suess, H. E. (1957). Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus, 9, 18–27.CrossRefGoogle Scholar
  53. Robbins, L. R., Campbell, A. C., Murphy, M. L., Brook, G. A., Srivastava, P., & Badenhorst, S. (2005). The advent of herding in southern Africa: Early AMS dates on domestic livestock from the Kalahari Desert, Botswana. Current Anthropology, 46(4), 671–677.CrossRefGoogle Scholar
  54. Ropelewski, C. F., & Halpert, M. S. (1987). Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Monthly Weather Review, 115(8), 1606–1626.CrossRefGoogle Scholar
  55. Ropelewski, C. F., & Halpert, M. S. (1989). Precipitation patterns associated with the high index phase of the Southern Oscillation. Journal of Climate, 2(3), 268–284.CrossRefGoogle Scholar
  56. Ropelewski, C. F., & Halpert, M. S. (1996). Quantifying Southern Oscillation-precipitation relationships. Journal of Climate, 9(5), 1043–1059.CrossRefGoogle Scholar
  57. Rutherford, M. C. (1997). Categorization of biomes. In R. M. Cowling, D. M. Richardson, & S. M. Pierce (Eds.), The vegetation of Southern Africa (pp. 91–98). Cambridge: Cambridge University Press.Google Scholar
  58. Sampson, C. G., Blagg, J., Hart, T., & Wallsmith, D. (1989). The ceramic sequence in the upper Seacow valley: Problems and implications. South African Archaeological Bulletin, 44, 3–16.CrossRefGoogle Scholar
  59. Schulze, B. R. (1984). Climate of South Africa, Part 8: General survey, 5th ed., WB 28. Pretoria: South African Weather Bureau.Google Scholar
  60. Schwarz, E. H. L. (1920). The Kalahari or thirstland redemption. Cape Town: Miller.Google Scholar
  61. Scott, L., & Thackeray, J. F. (2015). Palynology of Holocene deposits in excavation 1 at Wonderwerk Cave, Northern Cape (South Africa). African Archaeological Review, 32(4), 1–17. doi:10.1007/s10437-015-9204-9.
  62. Scott, L., Neumann, F. H., Brook, G. A., Bousman, C. B., Norström, E., & Metwally, A. A. (2012). Terrestrial fossil-pollen evidence of climate change during the last 26 thousand years in southern Africa. Quaternary Science Reviews, 32, 100–118.CrossRefGoogle Scholar
  63. Shopov, Y. Y., Ford, D. C., & Schwarz, H. P. (1994). Luminescent micro-banding in speleothems: High-resolution chronology and paleoclimate. Geology, 22, 407–410.CrossRefGoogle Scholar
  64. Sletten, H. R., Railsback, L. B., Liang, F., Brook, G. A., Marais, E., Hardt, B. F., Cheng, H., & Edwards, R. L. (2013). A petrographic and geochemical record of climate change over the last 4600 years from a northern Namibia stalagmite, with evidence of abruptly wetter climate at the beginning of southern Africa’s Iron Age. Palaeogeography, Palaeoclimatology, Palaeoecology, 376, 149–162.CrossRefGoogle Scholar
  65. Smith, J. (2005). Climate change and agropastoral sustainability in the shashe-limpopo river basin from ad 900. Ph.D. Dissertation, University of the Witwatersrand, JohannesburgGoogle Scholar
  66. Smith, A. B. (2006). Excavations at Kasteelberg and the origins of the Khoekhoen in the Western Cape, South Africa. Oxford: BAR International Series 1537.Google Scholar
  67. Smith, A. B. (2008). Early herders in Southern Africa: A synthesis. In S. Badenhorst, P. Mitchell, & J. Driver (Eds.), Animals and people: Archaeozoological papers in honour of Ina Plug (pp. 94–103). Oxford: BAR International Series 1849.Google Scholar
  68. Southon, J., Noronha, A. L., Cheng, H., Edwards, R. L., & Wang, Y. (2012). A high-resolution record of atmospheric 14C based on Hulu Cave speleothem H82. Quaternary Science Reviews, 33, 32–41.CrossRefGoogle Scholar
  69. Stager, J. C., Ryves, D. B., King, C., Madson, J., Hazzard, M., Neumann, F. H., & Maud, R. (2013). Late Holocene precipitation variability in the summer rainfall region of South Africa. Quaternary Science Reviews, 67, 105–120.CrossRefGoogle Scholar
  70. Stuiver, M., & Reimer, P. J. (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon, 35, 215–230.Google Scholar
  71. Suess, H. E. (1955). Radiocarbon concentration in modern wood. Science, 122(3166), 415–417.CrossRefGoogle Scholar
  72. Talma, A. S., & Vogel, J. C. (1992). Late Quaternary palaeotemperatures derived from a speleothem from Cango Caves, Cape Province, South Africa. Quaternary Research, 37, 203–213.CrossRefGoogle Scholar
  73. van Zinderen Bakker, E. M. (1982). Pollen analytical studies of the Wonderwerk Cave, South Africa. Pollen et Spores, 24, 235–350.Google Scholar
  74. Vogel, J. C. (1983). 14C variations during the Upper Pleistocene. In M. Stuiver & R. Kra (Eds.), Proceedings of the 11th International 14C Conference. Radiocarbon, 25(2), 213–218Google Scholar
  75. Wanner, H., Beer, J., Bütikofer, J., Crowley, T. J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Küttel, M., Müller, S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner, M., & Widmann, M. (2008). Mid- to late Holocene climate change: An overview. Quaternary Science Reviews, 27(19–20), 1791–1828.CrossRefGoogle Scholar
  76. Webster, J. W., Brook, G. A., Railsback, L. B., Cheng, H., Edwards, R. L., Alexander, C., & Reeder, P. P. (2007). Stalagmite evidence from Belize indicating significant droughts at the time of Preclassic Abandonment, the Maya Hiatus, and the Classic Maya Collapse. Palaeogeography, Palaeoclimatology, Palaeoecology, 250, 1–17.CrossRefGoogle Scholar
  77. Wild, E. M., Arlamovsky, K. A., Golser, R., Kutschera, W., Priller, A., Puchegger, S., Rom, W., Steier, P., & Vycudilik, W. (2000). 14C dating with the bomb peak: An application to forensic medicine. Nuclear Instruments and Methods in Physics Research B, 172, 944–950.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • George A. Brook
    • 1
  • L. Bruce Railsback
    • 2
  • Louis Scott
    • 3
  • Ny Riavo G. Voarintsoa
    • 2
  • Fuyuan Liang
    • 4
  1. 1.Department of GeographyUniversity of GeorgiaAthensUSA
  2. 2.Department of GeologyUniversity of GeorgiaAthensUSA
  3. 3.Department of Plant SciencesUniversity of the Free StateBloemfonteinSouth Africa
  4. 4.Department of GeographyWestern Illinois UniversityMacombUSA

Personalised recommendations