African Archaeological Review

, Volume 32, Issue 4, pp 645–668 | Cite as

U–Pb Dating Small Buried Stalagmites from Wonderwerk Cave, South Africa: a New Chronometer for Earlier Stone Age Cave Deposits

Original Article

Abstract

Wonderwerk Cave, in the Northern Cape, South Africa, contains a long and much studied sequence of archaeological sediments and stone tool industries and is particularly known for its Earlier Stone Age (ESA) deposits. The paucity of well-dated ESA sites in South Africa, as well as question of the Fauresmith, seen as a transitional industry between the ESA and Middle Stone Age, make Wonderwerk Cave an important site. Uranium–lead (U–Pb) dating of speleothems is a relatively new chronometer, and ages for samples as small and fragmentary as the little buried stalagmites from Wonderwerk Cave help establish it as an imminent dating technique for archaeological sites. The key to successful U–Pb dating of these relatively young, buried stalagmites is thorough pre-screening. Laser ablation scans proved invaluable in identifying layers within the stalagmite suitable for U–Pb dating, as well as providing detailed trace element data, which exclude the possibility of diffusion absorption of U in or out of the samples and confirm the integrity of the U–Pb ages. The relationship between the small stalagmites and the sediments surrounding them is paramount to interpreting the ages. Given that stalagmites need a stable cave floor to form on, these samples will predate the sediments below them and are most likely coeval with the sediments surrounding them and as such provide close to maximum ages for these deposits. WW23 from stratum 5 at the base of excavation 2 has a U–Pb age of 0.548 ± 0.027 Ma. Two samples from stratum 10 from excavation 1, WW2 and WW4, have U–Pb ages of 0.734 ± 0.069 and 0.839 ± 0.026 Ma, respectively. These ages are precise enough to become a powerful tool to be used in pinning palaeomagnetic sequences and hint at a younger age of ~780 ka to 1.07 Ma for the older deposits, but a much larger data set is needed before this can be done with confidence. As it stands, these two ages suggest that there may be significant temporal variation within the stratum 10 deposits across the excavation area, and further work will be needed to constrain the chronology of the ESA deposits at Wonderwerk Cave. However, the addition of a new chronometer in the form of U–Pb dating adds an important new line of evidence for this complex task. As such, this technique will have broad applications for ESA cave sites older than 500 ka and beyond the limit of conventional uranium–thorium (U–Th) dating.

Résumé

Wonderwerk Cave, dans le Northern Cape, Afrique du Sud, contient une séquence longue et très étudiée des sédiments archéologiques et les industries d’outils en pierre et est particulièrement connu pour ses précédentes âge de pierre (SEC ) des dépôts. La rareté des sites de l'ESA bien datés en Afrique du Sud, ainsi que la question de la Fauresmith, vu comme une industrie de transition entre l' ESA et du Middle Stone Age, font Wonderwerk Cave, un site important. Uranium–plomb (U–Pb) datant de concrétions est relativement nouveau chronomètre et âges des échantillons de petites et fragmentaires que les petites stalagmites enterrés de Wonderwerk Cave aider à établir comme une technique de datation imminent pour les sites archéologiques. La clé de la réussite datation U–Pb de ces relativement jeunes, stalagmites enterrés est approfondie présélection. Balayages laser d'ablation ont été précieuses dans l'identification des couches dans la stalagmite approprié pour datation U–Pb, ainsi que de fournir des données d'oligo-éléments détaillés, ce qui exclut la possibilité de diffusion-absorption de U ou sur des échantillons et de confirmer l'intégrité de l' U–Pb âges. La relation entre les petites stalagmites et les sédiments qui les entourent est primordiale pour l'interprétation des âges. Étant donné que les stalagmites ont besoin d'un sol de la grotte stable pour former sur ces échantillons antérieurs les sédiments sous eux et sont contemporains les plus susceptibles de les sédiments qui les entourent et en tant que tel, fournissent près de l'âge maximal pour ces dépôts. WW23 de la strate 5 à la base de Excavation 2 a un âge U–Pb de 0,548 ± 0,027 Ma. Deux échantillons de la strate 10 à partir de 1 Excavation, WW2 et WW4 ont âges U-Pb de 0,734 ± 0,069 0,839 ± Ma et 0,026 Ma, respectivement. Ces âges sont assez précises pour devenir un outil puissant pour être utilisé en épinglant séquences paléomagnétiques et signe à un plus jeune âge de ~ 780 ka à 1,07 Ma pour les dépôts plus anciens, mais un ensemble de données beaucoup plus importante est nécessaire avant que cela puisse se faire en toute confiance. À l'heure actuelle ces deux âges suggèrent qu'il peut y avoir variation temporelle significative dans la strate 10 dépôts à travers la zone d'excavation et d'autres travaux seront nécessaires pour contraindre la chronologie des dépôts de l'ESA à Wonderwerk Cave. Toutefois, l'ajout d'un nouveau chronomètre sous la forme de datation U–Pb ajoute une importante nouvelle source de données pour cette tâche complexe. Comme telle, cette technique aura applications larges ESA sites rupestres de plus que 500 ka et au-delà de la limite de l'uranium-thorium classique rencontres.

Keywords

U–Pb dating Buried speleothem Wonderwerk Cave South African Archaeology Earlier Stone Age Palaeomagnetic reversals 

References

  1. Baksi, A. K., & Hoffman, K. A. (2000). On the age of morphology of the reunion event. Geophys Res Lett, 27(18), 2997–3000.CrossRefGoogle Scholar
  2. Baksi, A. K., Hsu, V., McWilliams, M. O., & Farrar, E. (1992). 40Ar/39Ar dating of the Brunhes-Matuyama geomagnetic field reversal. Science, 256(5055), 356–357.CrossRefGoogle Scholar
  3. Beaumont, P. B., & Vogel, J. C. (2006). On a timescale for the past million years of human history in central South Africa. S Afr J Sci, 102(5–6), 217–228.Google Scholar
  4. Berna, F., Goldberg, P., Horwitz, L. K., Brink, J., Holt, S., Bamford, M., & Chazan, M. (2012). Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proc Natl Acad Sci U S A, 109(20), E1215–E1220.CrossRefGoogle Scholar
  5. Brink, J. S., Herries, A. I. R., Moggi-Cecchi, J., Gowlett, J. A. J., Bousman, C. B., Hancox, J. P., et al. (2012). First hominine remains from ~1.0 million year old bone bed at Cornelia-Uitzoek, Free State Province, South Africa. J Hum Evol, 63(3), 527–535.CrossRefGoogle Scholar
  6. Brook, G. A., Scott, L., Railsback, L. B., & Goddard, E. A. (2010). A 35 ka pollen and isotope record of environmental change along the southern margin of the Kalahari from stalagmite and animal dung deposits in Wonderwerk Cave, South Africa. J Arid Environ, 74(7), 870–884.CrossRefGoogle Scholar
  7. Cande, S. C., & Kent, D. V. (1995). Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research: Solid Earth, 100(B4), 6093–6095.CrossRefGoogle Scholar
  8. Channell, J. E. T., Mazaud, A., Sullivan, P., Turner, S., & Raymo, M. E. (2002). Geomagnetic excursions and paleointensities in the Matuyama Chron at Ocean Drilling Program Sites 983 and 984 (Iceland Basin). J Geophys Res, 107(B6), 2114.CrossRefGoogle Scholar
  9. Chazan, M., & Horwitz, L. K. (2009). Milestones in the development of symbolic behaviour: A case study from Wonderwerk Cave, South Africa. World Archaeology, 41(4), 521–539.CrossRefGoogle Scholar
  10. Chazan, M., Ron, H., Matmon, A., Porat, N., Goldberg, P., Yates, R., et al. (2008). Radiometric dating of the Earlier Stone Age sequence in Excavation I at Wonderwerk Cave, South Africa: Preliminary results. J Hum Evol, 55(1), 1–11.CrossRefGoogle Scholar
  11. Chazan, M., Avery, D. M., Bamford, M. K., Berna, F., Brink, J., Holt, S., Fernandez-Jalvo, Y., Goldberg, P., Matmon, A., Porat, N., Ron, H., Rossouw, L., Scott, L., & Horwitz, L. K. (2012). The Oldowan horizon in Wonderwerk Cave (South Africa): Archaeological, geological, paleontological and paleoclimatic evidence. J Hum Evol, 63(6), 859–866.CrossRefGoogle Scholar
  12. Dirks, P., Kibii, J. M., Kuhn, B. F., Steininger, C., Churchill, S. E., Kramers, J. D., Pickering, R., Farber, D. L., et al. (2010). Geological setting and age of Australopithecus sediba from Southern Africa. Science, 328(5975), 205–208.CrossRefGoogle Scholar
  13. Edwards, L. R., Chen, J. H., & Wasserburg, G. J. (1987). 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet Sci Lett, 81(2–3), 175–192.CrossRefGoogle Scholar
  14. Eggins, S. M., Grün, R., McCulloch, M. T., Pike, A. W. G., Chappell, J., Kinsley, L., Mortimer, G., Shelley, M., Murray-Wallace, C. V., Spötl, C., & Taylor, L. (2005). In situ U-series dating by laser-ablation multi-collector ICPMS: New prospects for Quaternary geochronology. Quat Sci Rev, 24(23–24), 2523–2538.CrossRefGoogle Scholar
  15. Eriksson, P. G., Schweitzer, J. K., Bosch, P. J. A., Schereiber, U. M., Van Deventer, J. L., & Hatton, C. J. (1993). The transvaal sequence: An overview. J Afr Earth Sci, 16(1–2), 25–51.CrossRefGoogle Scholar
  16. Goren-Inbar, N., Feibel, C. S., Verosub, K. L., Melamed, Y., Kislev, M. E., Tchernov, E., et al. (2004). Evidence of Hominin control of fire at Gesher Benot Ya’aqov, Israel. Science, 304(5671), 725–727.CrossRefGoogle Scholar
  17. Herries, A. I. R. (2011). A chronological perspective on the Acheulian and its transition to the Middle Stone Age in southern Africa: The question of the Fauresmith. Int J Evol Biol, 2011, 25. doi:10.4061/2011/961401.CrossRefGoogle Scholar
  18. Herries, A. I. R., Hopley, P., Adams, J., Curnoe, D., & Maslin, M. (2010). Geochronology and palaeoenvironments of the South African early hominin bearing sites: A reply to ‘Wrangham et al., 2009: Shallow-water habitats as sources of fallback foods for Hominins’. Am J Phys Anthropol, 143, 640–646.CrossRefGoogle Scholar
  19. Kuman, K. (2007). The Earlier Stone Age in South Africa: Site context and the influence of cave studies. In T. R. Pickering, K. Schick, & N. Toth (Eds.), Breathing life into fossils: Taphonomic studies in honor of C. K. (Bob) Brain (pp. 181–198). Bloomington, IN: Stone Age Institute Press.Google Scholar
  20. Lai, C., & Channell, J. E. T. (2009). Geomagnetic excursions. In M. Kono (Ed.), Treatise on geophysics: Geomagnetism (pp. 373–416). Amsterdam: Elsevier.Google Scholar
  21. Matmon, A., Ron, H., Chazan, M., Porat, N., & Horwitz, L. K. (2012). Reconstructing the history of sediment deposition in caves: A case study from Wonderwerk Cave, South Africa. Bull Geol Soc Am, 124(3–4), 611–625.CrossRefGoogle Scholar
  22. McDougall, I., Brown, F. H., Cerling, T. E., & Hillhouse, J. W. (1992). A reappraisal of the geomagnetic polarity time scale to 4 Ma using data from the Turkana Basin, East Africa. Geophys Res Lett, 19(23), 2349–2352.CrossRefGoogle Scholar
  23. Millard, A. R., & Hedges, R. E. M. (1996). A diffusion-adsorption model of uranium uptake by archaeological bone. Geochim Cosmochim Acta, 60(12), 2139–2152.CrossRefGoogle Scholar
  24. Ogg, J. G. (2012). Geomagnetic polarity time scale. In F. M. Gradstein, J. G. Ogg, M. D. Schmitz, & G. M. Ogg (Eds.), The geologic time scale (pp. 85–113). Boston: Elsevier.CrossRefGoogle Scholar
  25. Partridge, T. C., Granger, D. E., Caffee, M. W., & Clarke, R. J. (2003). Lower Pliocene hominid remains from Sterkfontein. Science, 300(5619), 607–612.CrossRefGoogle Scholar
  26. Paul, B., Paton, C., Norris, A., Woodhead, J., Hellstrom, J., Hergt, J., et al. (2012). Cell Space: A module for creating spatially registered laser ablation images within the Iolite freeware environment. J Anal At Spectrom, 27(4), 700–706.CrossRefGoogle Scholar
  27. Pickering, R., & Kramers, J. D. (2010). A re-appraisal of the stratigraphy and new U-Pb dates at the Sterkfontein hominin site, South Africa. J Hum Evol, 59, 70–86.CrossRefGoogle Scholar
  28. Pickering, R., Kramers, J. D., Partridge, T., Kodolanyi, J., & Pettke, T. (2010). U–Pb dating of calcite–aragonite layers in speleothems from hominin sites in South Africa by MC-ICP-MS. Quat Geochronol, 5, 544–558.CrossRefGoogle Scholar
  29. Pickering, R., Kramers, J. D., Hancox, P. J., de Ruiter, D. J., & Woodhead, J. D. (2011). Australopithecus sediba at 1.977 Ma and implications for the origins of the genus Homo. Science, 333(6048), 1421–1423.CrossRefGoogle Scholar
  30. Pickering, R., Jacobs, Z., Herries, A. I. R., Karkanas, P., et al. (2013). Paleoanthropologically significant South African sea caves dated to 1.0 million years using a combination of U-Pb, TT-OSL and palaeomagnetism. Quat Sci Rev, 65, 39–52.CrossRefGoogle Scholar
  31. Pike, A. W. G., Hedges, R. E. M., & Van Calsteren, P. (2002). U-series dating of bone using the diffusion- adsorption model. Geochim Cosmochim Acta, 66(24), 4273–4286.CrossRefGoogle Scholar
  32. Porat, N., Chazan, M., Grün, R., Aubert, M., Eisenmann, V., & Horwitz, L. (2010). New radiometric ages for the Fauresmith industry from Kathu Pan, southern Africa: Implications for the Earlier to Middle Stone Age transition. J Archaeol Sci, 37(2), 269–283.CrossRefGoogle Scholar
  33. Sloman, J. (2011). Trace elements in speleothems: Implications for age models and palaeoclimate. Melbourne: Masters thesis, University of Melbourne.Google Scholar
  34. St. Pierre, E., Zhao, J. X., & Reed, E. (2009). Expanding the utility of Uranium-series dating of speleothems for archaeological and palaeontological applications. J Archaeol Sci, 36(7), 1416–1423.CrossRefGoogle Scholar
  35. St. Pierre, E., Zhao, J.-X., Feng, Y.-X., Reed, E. (2012). U-series dating of soda straw stalactites from excavated deposits: Method development and application to Blanche Cave, Naracoorte, South Australia. Journal of Archaeological Science, 39(4), 922–930.Google Scholar
  36. Stirling, C. H., Esat, T. M., Lambeck, K., & McCulloch, M. T. (1998). Timing and duration of the last interglacial: Evidence for a restricted interval of widespread coral reef growth. Earth Planet Sci Lett, 160(3), 745–762.CrossRefGoogle Scholar
  37. Walker, J., Cliff, R. A., & Latham, A. G. (2006). U-Pb isotopic age of the StW 573 hominid from Sterkfontein, South Africa. Science, 314(5805), 1592–1594.CrossRefGoogle Scholar
  38. Woodhead, J. D., & Pickering, R. (2012). Beyond 500 ka: Progress and prospects in the U-Pb chronology of speleothems, and their application to studies in palaeoclimate, human evolution, biodiversity and tectonics. Chemical Geology, 322–323, 290–299.Google Scholar
  39. Woodhead, J., Hellstrom, J., Maas, R., Drysdale, R., Zanchetta, G., Devine, P., et al. (2006). U-Pb geochronology of speleothems by MC-ICPMS. Quat Geochronol, 1(3), 208–221.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Earth SciencesUniversity of MelbourneVictoriaAustralia
  2. 2.Department of Geological SciencesUniversity of Cape TownCape TownSouth Africa

Personalised recommendations