Advertisement

African Archaeological Review

, Volume 32, Issue 4, pp 793–811 | Cite as

Holocene Environmental Change at Wonderwerk Cave, South Africa: Insights from Stable Light Isotopes in Ostrich Eggshell

  • Julia A. Lee-Thorp
  • Michaela Ecker
Original Article

Abstract

Sparse records and discontinuous and/or poor chronologically resolved data hinder construction of reliable palaeoenvironmental sequences for the interior of South Africa. Wonderwerk Cave occupies a central position in the interior where the Kalahari Thornveld/dry woodland vegetation and generally arid conditions are expected to be sensitive to subtle past climate perturbations, and evidence from this site has been key to forming views on environmental change in the interior. A compilation of existing data including principal component analysis of pollen suggested broad trends, ranging from variably arid and open in the early Holocene to moister conditions from about 7500 to 5000 years, followed by aridity thereafter. In an effort to better establish the nature and timing of shifts from the Late Pleistocene sequence onwards, we analyse carbon and oxygen isotope ratios in a robust sample of ostrich eggshell from Wonderwerk Cave. The resulting data are then placed within a temporal framework established by Bayesian modelling of existing radiocarbon dates and compared against shifts in the Wonderwerk cultural sequence. Several shifts and trends in aridity include an arid to moist shift in layer 4b near 6000 years, coincident with a cultural shift within the Wilton assemblage, and thereafter an aridification trend culminating at about 2000 years with the appearance of the ceramic LSA.

Keywords

Aridity Radiocarbon dates Bayesian model C3 vegetation C4 grasses 

Résumé

Des données isolées, discontinues, voire mal datées, gênent l’élaboration d’une séquence environnementale fiable pour le centre de l’Afrique du Sud. La grotte de Wonderwerk est située au centre du pays, là où le paysage boisé et sec du Kalahari Thornveld et ses conditions généralement arides, sont susceptibles de réagir aux faibles fluctuations climatiques du passé. Cette grotte est donc un site clé pour la compréhension des changements environnementaux du centre de l’Afrique du Sud. Une compilation de données existantes comprenant l’analyse en composantes principales de pollen suggère des changements allant d’une aridité variable dans un paysage ouvert durant l’Holocène ancien à des conditions plus humides de 7500 à 5000 ans, suivit de conditions à nouveau plus arides. Afin d’établir la nature et la chronologie des variations environnementales dès le Pléistocène supérieur, nous avons analysé les variations isotopiques de l'oxygène et du carbone à partir d’un ensemble de coquilles d’œufs d’autruches échantillonnées dans la grotte de Wonderwerk. Les données obtenues ont ensuite été placées dans un cadre temporel établi par modélisation bayésienne de datations au carbone 14 existantes, et comparées aux variations observées dans la séquence culturelle de Wonderwerk. Plusieurs changements climatiques ont été observés, parmi lesquels un changement aride-humide au sein de la strate 4b datant d’il y a environ 6000 ans, qui correspond à un changement au sein de l’assemblage datant du Wilton. Ce changement est suivi d’un retour vers des conditions arides qui culminent il y a environ 2000 ans, à l’apparition du Néolithique à céramique.

Notes

Acknowledgments

We thank Peter Beaumont for providing the ostrich eggshell samples for analysis and for his encouragement over many years. We are grateful to the late Nicholas Shackleton, and Mike Hall, for hosting JLT in the Godwin Laboratory, Cambridge University and for their assistance in all matters related to the project. We thank Christopher Ramsey, Mike Dee and Richard Staff for helpful discussions about Bayesian modelling and its interpretation. Funding support came from the South African National Research Foundation, the Natural Environment Research Council (NERC), UK (GR9/01333A), and from the German Academic exchange service (DAAD) and the School of Archaeology, University of Oxford. Most of the material used in this report was provided earlier by Peter Beaumont, McGregor Museum (South Africa). A small number of samples formed part of the current project directed by M. Chazan and L.K. Horwitz on the basis of an agreement with the McGregor Museum, under which access to the collections was given for team members. Fieldwork and artefact export of material relating to this research project were undertaken under the terms of permits issued by South African Heritage Resources Agency (SAHRA) to the McGregor Museum and members of the team. Finally, we thank four reviewers for their comments and Michael Chazan and Liora Horwitz for the invitation to contribute to this special issue of African archaeological Review.

Supplementary material

10437_2015_9202_MOESM1_ESM.xlsx (25 kb)
Supplementary Table 1 Ostrich eggshell carbon and oxygen isotope data from Wonderwerk Cave (XLSX 24 kb)
10437_2015_9202_MOESM2_ESM.pdf (232 kb)
Supplementary Table 2 Results of one-way ANOVA with Tukey’s HSD post hoc tests between strata. Significant p-values (<0.05) are marked by ** (PDF 231 kb)

References

  1. Acocks, J. P. H. (1953). Veld types of South Africa. Botanical Survey of South Africa Memoir (Vol. 28). Pretoria: Government Printer.Google Scholar
  2. Avery, D. M. (1981). Holocene micromammalian faunas from the northern Cape, South Africa. South African Journal of Science, 77, 265–273.Google Scholar
  3. Beaumont, P. B. (1990). Wonderwerk Cave. In P. B. Beaumont & D. Morris (Eds.), Guide to the archaeological sites in the Northern Cape (pp. 101–134). Kimberley: McGregor Museum.Google Scholar
  4. Beaumont, P., Van Zinderen Bakker, E. M., & Vogel, J. C. (1984). Environmental changes since 32 000 BP at Kathu Pan, Northern Cape. In J. C. Vogel (Ed.), Late Cainozoic Palaeoclimates of the Southern Hemisphere (pp. 329–338). Rotterdam: Balkema.Google Scholar
  5. Beaumont, P. B., & Vogel, J. C. (2006). On a timescale for the past million years of human history in central South Africa. South African Journal of Science, 102, 217–228.Google Scholar
  6. Bousman, C. B. (2005). Coping with risk: Later Stone Age technological strategies at Blydefontein Rock Shelter, South Africa. Journal of Anthropological Archaeology, 24, 193–226.CrossRefGoogle Scholar
  7. Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51, 337–360.Google Scholar
  8. Bronk Ramsey, C. (2013). OxCal 4.2. http://c14.arch.ox.ac.uk.Google Scholar
  9. Brook, G. A., Scott, L., Railsback, B., & Goddard, E. A. (2010). A 35 ka pollen and isotope record of environmental change along the southern margin of the Kalahari from a stalagmite in Wonderwerk Cave, South Africa. Journal of Arid Environments, 74(5), 870–884.CrossRefGoogle Scholar
  10. Brook, G. A., Railsback, L. B., Scott, L., Voarintsoa, N. R. G., & Liang, F. (2015). Late Holocene stalagmite and tufa climate records for Wonderwerk Cave: Relationships between archaeology and climate in southern Africa. African Archaeological Review 32(4), this issue.Google Scholar
  11. Brown L. H., Urban E. K., Newman K. (1982). The Birds of Africa, Vol. 1. Academic Press.Google Scholar
  12. Burrough, S. L., & Thomas, D. S. G. (2013). Central southern Africa at the time of the African humid period: A new analysis of Holocene palaeoenvironmental and palaeoclimate data. Quaternary Science Reviews, 80, 29–46.CrossRefGoogle Scholar
  13. Butzer, K. W., Stuckenrath, R., Bruzewicz, A. J., & Helgren, D. M. (1978). Late Cenozoic paleoclimates of the Ghaap Escarpment, Kalahari margin, South Africa. Quaternary Research, 10, 310–339.CrossRefGoogle Scholar
  14. Butzer, K. W., Fock, G. J., Scott, L., & Stuckenrath, R. (1979a). Dating and context of rock engravings in southern Africa. Science, 203, 1201–1214.CrossRefGoogle Scholar
  15. Butzer, K. W., Stuckenrath, R., & Vogel, J. C. (1979b). The geo-archaeological sequence of Wonderwerk Cave, South Africa. Meeting, Calgary: Abstracts of the Society of Africanist Archaeologists.Google Scholar
  16. Chase, B. M., Meadows, M. E., Carr, A. S., & Reimer, P. J. (2010). Evidence for progressive Holocene aridification in southern Africa recorded in Namibian hyrax middens: Implications for African monsoon dynamics and the ‘African Humid Period’. Quaternary Research, 74, 36–45.Google Scholar
  17. Cockcroft, M. J., Wilkinson, M. J., & Tyson, P. D. (1987). The application of a present-day climatic model to the late Quaternary in Southern Africa. Climatic Change, 10, 161–181.CrossRefGoogle Scholar
  18. Crisp, M. (2013). Amino acid racemization dating: Method development using African ostrich (Struthio camelus) eggshell. Unpubl. Ph.D. thesis, University of York.Google Scholar
  19. Dee, M. W., Bronk Ramsey, C., Shortland, A. J., Higham, T. F. G., & Rowland, J. M. (2009). Reanalysis of the chronological discrepancies obtained by the Old and Middle Kingdom Monuments Project. Radiocarbon, 51(3), 1061–1070.Google Scholar
  20. Föstel, H. (1978). The enrichment of 18O in leaf water under natural conditions. Radiation Environment Biophysics, 15, 323–344.CrossRefGoogle Scholar
  21. Hogg, A. G., Hua, Q., Blackwell, P. G., Niu, M., Buck, C. E., Guilderson, T. P., Heaton, T. J., Palmer, J. G., Reimer, P. J., Reimer, R. W., Turney, C. S. M., & Zimmermann, S. R. H. (2013). SHCal13 Southern Hemisphere Calibration, 0-50,000 Years cal BP. Radiocarbon, 55(4), 1889–1903.CrossRefGoogle Scholar
  22. Holmgren, K., Lee-Thorp, J. A., Cooper, G. R. J., Lundblad, K., Partridge, T. C., Scott, L., Sithaldeen, R., Talma, A. S., & Tyson, P. D. (2003). Persistent millennial-scale variability over the past 25,000 years in southern Africa. Quaternary Science Reviews, 22, 2311–2326.CrossRefGoogle Scholar
  23. Humphreys, A. J. B., & Thackeray, A. I. (1983). Ghaap and Gariep. Later Stone Age studies in the northern Cape. Cape Town: South African Archaeological Society Monograph No. 2.Google Scholar
  24. Johnson, B. J., Miller, G. H., Beaumont, P. B., & Fogel, M. L. (1997). The determination of late Quaternary paleoenvironments at Equus Cave, South Africa, using stable isotopes and amino acid racemization in ostrich eggshell. Palaeogeography Palaeoclimatology Palaeoecology, 136, 121–137.CrossRefGoogle Scholar
  25. Johnson, B. J., Fogel, M. L., & Miller, G. H. (1998). Stable isotopes in modern ostrich eggshell: A calibration for paleoenvironmental applications in semi-arid regions of southern Africa. Geochimica et Cosmochimica Acta, 62(14), 2451–2461.CrossRefGoogle Scholar
  26. Kingston, J. (2011). Stable isotopic analyses of Laetoli fossil herbivores. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context. Volume 1: Geology, geochronology (pp. 293–328). Berlin: Vertebrate Paleobiology and Paleoanthropology Series.CrossRefGoogle Scholar
  27. Lee-Thorp, J. A., & Beaumont, P. B. (1995). Vegetation and seasonality shifts during the Late Quaternary deduced from 12C/13C ratios of grazers at Equus Cave, South Africa. Quaternary Research, 43, 426–432.CrossRefGoogle Scholar
  28. Lee-Thorp, J. A., Holmgren, K., Lauritzen, S. E., Linge, H., Moberg, A., Partridge, T. C., Stevenson, C., & Tyson, P. D. (2001). Rapid climate shifts in the southern African interior throughout the Mid to Late Holocene. Geophysical Research Letters, 28, 4507–4510.CrossRefGoogle Scholar
  29. Lee-Thorp, J. A., & Talma, S. (2000). Stable light isotopes and past environments in the Southern African Quaternary and Pliocene. In T. C. Partridge & R. Maud (Eds.), The Cenozoic of Southern Africa (pp. 236–251). Oxford: Oxford University Press.Google Scholar
  30. Long, A., Hendershott, R., & Martin, P. (1983). Radiocarbon dating of fossil eggshell. Radiocarbon, 25(2), 533–539.Google Scholar
  31. Milton, S. J., Dean, W. R. J., & Siegfried, W. R. (1994). Food selection by ostrich in southern Africa. The Journal of Wildlife Management, 58(2), 234–248.CrossRefGoogle Scholar
  32. Mooney, H. A., Troughton, J. H., & Berry, J. A. (1977). Carbon isotope ratio measurements of succulent plants in Southern Africa. Oecologia, 30, 295–305.CrossRefGoogle Scholar
  33. R Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/.Google Scholar
  34. Rutherford, M. C., & Westfall, R. H. (1986). Biomes of Southern Africa—An objective categorization. Memoirs of the Botanical Survey of South Africa, 54, 1–98.Google Scholar
  35. Sauer, E. G. F., & Sauer, E. M. (1966). Social behaviour of the South African ostrich Struthio camelus australis. Ostrich: Journal of African Ornithology, 37, 183–191.CrossRefGoogle Scholar
  36. Scott, L., Steenkamp, M., & Beaumont, P. B. (1995). Palaeoenvironmental conditions in South Africa at the Pleistocene-Holocene transition. Quaternary Science Reviews, 14, 937–947.CrossRefGoogle Scholar
  37. Scott, L., & Thackeray, J. F. (2015). Palynology of Holocene deposits in Excavation 1 at Wonderwerk Cave, Northern Cape (South Africa). African Archaeological Review, 32(4).Google Scholar
  38. Scott, L., & Lee-Thorp, J. A. (2004). Holocene climatic trends and rhythms in Southern Africa. In R. W. Battarbee, F. Gasse, & C. E. Stickley (Eds.), Past climate variability through Europe and Africa (pp. 69–91). Dordrecht: Springer.CrossRefGoogle Scholar
  39. Scott, L., Neumann, F. H., Brook, G. A., Bousman, C. B., Norström, E., & Metwally, A. A. (2012). Terrestrial fossil-pollen evidence of climate change during the last 26 thousand years in Southern Africa. Quaternary Science Reviews, 32, 100–118.CrossRefGoogle Scholar
  40. Ségalen, L. (2003). Evolution environnementale du Désert du Namib depuis le Miocène. Apports de la sédimentologie et des rapports isotopiques (13C, 18O) mesurés sur des coquilles de ratites. PhD thesis, Univ. Pierre and Marie Curie.Google Scholar
  41. Ségalen, L., Renard, M., Lee-Thorp, J. A., Emmanuel, L., Le Callonnec, L., de Rafélis, M., Senut, B., Pickford, M., & Melice, J.-L. (2006). Neogene climate change and emergence of C4 grasses in the Namib, southwestern Africa, as reflected in ratite 13C and 18O. Earth and Planetary Science Letters, 244, 725–734.CrossRefGoogle Scholar
  42. Sharp, Z. (2007). Principles of stable isotope geochemistry. Upper Saddle River, NJ: Pearson Education.Google Scholar
  43. Smith, B. N., & Epstein, S. (1971). Two categories of 13C/12C ratios for higher plants. Plant Physiology, 47(3), 380–384.CrossRefGoogle Scholar
  44. Smith, J. M., Lee-Thorp, J. A., & Sealy, J. C. (2002). Stable carbon and oxygen isotopic evidence for late Pleistocene to middle Holocene climatic fluctuations in the interior of southern Africa. Journal of Quaternary Science, 17, 683–695.CrossRefGoogle Scholar
  45. Stern, L. A., Johnson, G. D., & Chamberlain, C. P. (1994). Carbon isotope signature of environmental change found in fossil ratite eggshells from a South Asian Neogene sequence. Geology, 22, 419–422.CrossRefGoogle Scholar
  46. Thackeray, A. I. (1981). The Holocene cultural sequence in the northern Cape Province, South Africa. PhD thesis, Yale University.Google Scholar
  47. Thackeray J.F. (1983). Man, animals and extinctions: The analysis of Holocene faunal remains from Wonderwerk Cave, South Africa. PhD thesis, Yale University.Google Scholar
  48. Thackeray, J. F., & Lee-Thorp, J. A. (1992). Isotopic analysis of equid teeth from Wonderwerk Cave, northern Cape Province, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 99, 141–150.CrossRefGoogle Scholar
  49. Truc, L., Chevalier, M., Favier, C., Cheddadi, R., Meadows, M. E., Scott, L., Carr, A. S., Smith, G. F., & Chase, B. M. (2013). Quantification of climate change for the last 20,000 years from Wonderkrater, South Africa: Implications for the long-term dynamics of the Intertropical Convergence Zone. Palaeogeography Palaeoclimatology Palaeoecology, 386, 575–587.CrossRefGoogle Scholar
  50. Tyson, P. D. (1986). Climatic change and variability in southern Africa. Cape Town: Oxford University Press.Google Scholar
  51. van Zinderen Bakker, E. M. (1982). Pollen analytical studies of the Wonderwerk Cave, South Africa. Pollen et Spores, 24(2), 235–250.Google Scholar
  52. Van Zinderen Bakker, E. M. (1967). Upper Pleistocene stratigraphy and Holocene ecology on the basis of vegetation changes in sub-Saharan Africa. In W. W. Bishop & J. D. Clark (Eds.), Background to evolution in Africa (pp. 125–147). Chicago: University of Chicago Press.Google Scholar
  53. Vogel, J. C., Fuls, A., & Ellis, R. (1978). The geographical distribution of Kranz grasses in South Africa. South African Journal of Science, 74, 209–219.Google Scholar
  54. Vogel, J. C., Fuls, A., & Visser, E. (1986). Pretoria radiocarbon dates III. Radiocarbon, 28(3), 1133–1172.Google Scholar
  55. von Schirnding, Y., Van der Merwe, N. J., & Vogel, J. C. (1982). Influence of diet and age on carbon isotope ratios in ostrich eggshell. Archaeometry, 24, 3–20.CrossRefGoogle Scholar
  56. Williams, J. B., Siegfried, W. R., Milton, S. J., Adams, N. J., Dean, W. R. J., du Plessis, M. A., Jackson, S., & Nagy, K. A. (1993). Field metabolism, water requirements, and foraging behavior of wild ostriches in the Namib. Ecology, 74, 390–404.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Research Laboratory for Archaeology and the History of ArtUniversity of OxfordOxfordUK

Personalised recommendations