African Archaeological Review

, Volume 32, Issue 4, pp 729–750 | Cite as

Faunal Remains from Holocene Deposits, Excavation 1, Wonderwerk Cave, South Africa

Original Article

Abstract

Ungulate and small mammalian fauna have been recovered from Holocene deposits at Wonderwerk Cave, in the interior of South Africa, in the area of excavation 1. Statistical analyses of relative abundances of rodents and insectivores indicate that conditions were warm (between 19.1 and 19.3 °C) and very dry in the early Holocene in the Wonderwerk palaeo-environment, becoming moister in the mid-Holocene and still moister in the late Holocene. Temperatures in the late Holocene appear to have been about 1 °C lower than conditions in the early to mid-Holocene. In terms of habitats reflected by rodents, the early Holocene is associated with an abundance of the arid-indicator species, Desmodillus auricularis. The degree of aridity subsequently decreases, associated with an increase in a woodland savanna species, Saccostomus campestris. A later increase in abundance of Mystromus albicaudatus reflects an increase in open grassland in the Late Holocene. Equids (zebras) and alcelaphines (including wildebeest and hartebeest) dominate the ungulate assemblages. Two extinct species are represented in the early Holocene, namely Equus capensis (the giant zebra) and Megalotragus priscus (a large alcelaphine). Possible causes of their extinction may include both environmental and cultural factors. Homo sapiens was probably the main agent of accumulation of the Holocene deposits at Wonderwerk, although leopards (Panthera pardus) may have temporarily used the cave in the mid-Holocene at a time when wind-blown Kalahari sands were introduced.

Keywords

Holocene vertebrate fauna South Africa 

Résumé

Des restes d’ongulés et de petits mammifères ont été découverts lors de la fouille du Secteur 1 des niveaux Holocène de la Grotte de Wonderwerk en Afrique du Sud. Les analyses statistiques basées sur l’abondance relative des rongeurs et des insectivores tendent à indiquer des conditions paléo-environnementales chaudes (entre 19,1 °C et 19,3 °C) et très sèches au début de l’Holocène devenant plus humide à l’Holocène moyen et plus encore durant l’Holocène récent. La température durant l’Holocène récent semble avoir été inférieure d’un degré Celsius par rapport à l’Holocène ancien et moyen. En termes d’habitats reflétés par les rongeurs, l’Holocène ancien est associé à l’abondance de Desmodillus auricularis, une espèce reconnue comme indicateur d’aridité. Ce degré d’aridité diminue ensuite, associé à l’augmentation d’espèces de savane boisée – Saccostomus campestris. Une augmentation de Mystromus albicaudatus reflète quant à elle un accroissement de la prairie ouverte à l’Holocène récent. Les équidés (zèbres) et les alcelaphines (comprenant les gnu et les Hartebeest) dominent parmi l’assemblage d’ongulées. Deux espèces éteintes sont représentées dans l’Holocène ancien, Equus capensis (le zèbre géant) et Mégalotragus priscus (un alcelaphus large). Les causes possibles de leur extinction peuvent inclure des facteurs environnementaux et culturels. Homo sapiens était probablement le facteur principal d’accumulation des dépôts Holocène à Wonderwerk, bien que les léopards (Panthera pardus) aient pu avoir temporairement occupé la grotte durant l’Holocène moyen, lorsque les vents apportèrent les sables du Kalahari.

References

  1. Avery, D. M. (1981). Holocene microfaunal faunas from the northern Cape Province, South Africa. South African Journal of Science, 77, 265–273.Google Scholar
  2. Avery, D. M. (1982). Micromammals as palaeoenvironmental indicators and an interpretation of the Late Quaternary in the southern Cape Province, South Africa. Annals of the South African Museum, 85, 183–374.Google Scholar
  3. Avery, D. M. (1995). Southern savannas and Pleistocene hominid adaptations; The micromammalian perspective. In E. S. Vrba, G. H. Denton, T. C. Partridge, & L. H. Burckle (Eds.), Paleoclimate and evolution with emphasis on human origins (pp. 459–478). New Haven: Yale University Press.Google Scholar
  4. Avery, D. M. (2007). Pleistocene micromammals from Wonderwerk Cave, South Africa: Practical issues. Journal of Archaeological Science, 34, 613–625.CrossRefGoogle Scholar
  5. Bartram, L. E., & Marean, C. W. (1999). Explaining the “Klasies Pattern”: Kua ethnoarchaeology, the Die Kelders Middle Stone Age archeofauna, long bone fragmentation and carnivore ravaging. Journal of Archaeological Science, 26, 9–29.CrossRefGoogle Scholar
  6. Beaumont, P.B. (1979). A first account of recent excavations at Wonderwerk cave. Paper presented at the Sixth Biennial Congress of the Southern African Association of Archaeologists, Cape Town, June 1979.Google Scholar
  7. Beaumont, P. B. (1982). Aspects of the northern Cape Pleistocene project. Palaeoecology of Africa, 15, 41–44.Google Scholar
  8. Beaumont, P. B. (1990). Wonderwerk Cave. In P. B. Beaumont & D. Morris (Eds.), Guide to the archaeological sites in the Northern Cape (pp. 101–134). Kimberley: McGregor Museum.Google Scholar
  9. Beaumont, P. B. (2004). Wonderwerk Cave. In D. Morris & P. B. Beaumont (Eds.), Archaeology in the Northern Cape: Some key sites (pp. 31–36). Kimberley: McGregor Museum.Google Scholar
  10. Beaumont, P. B., & Vogel, J. C. (1989). Patterns in the age and context of rock art in the northern Cape. South African Archaeological Bulletin, 44, 73–81.CrossRefGoogle Scholar
  11. Behrensmeyer, A. K., & Dechant-Boaz, D. E. (1980). The recent bones of Amboseli Park, Kenya, in relation to east African paleoecology. In A. K. Behrensmeyer & A. P. Hill (Eds.), Fossils in the making. Vertebrate taphonomy and paleoecology (pp. 72–93). Chicago: Chicago University Press.Google Scholar
  12. Behrensmeyer, A. K., Western, D., & Dechant-Boaz, D. E. (1979). New perspectives in vertebrate paleoecology from a recent assemblage. Paleobiology, 5, 12–21.Google Scholar
  13. Binford, L. R., & Bertram, J. B. (1977). Bone frequencies and attritional processes. In L. R. Binford (Ed.), For theory building in archaeology (pp. 77–153). New York: Academic.Google Scholar
  14. Brain, C. K. (1974). Some suggested procedures in the analysis of bone accumulations from southern African Quaternary sites. Annals of the Transvaal Museum, 29, 1–8.Google Scholar
  15. Brain, C. K. (1981). The hunters or the hunted? An introduction to African cave taphonomy. Chicago: University of Chicago Press.Google Scholar
  16. Brink, J. S., & Lee-Thorp, J. A. (1992). The feeding niche of an extinct antelope, Antidorcas bondi (Antelopini, Bividae), and its paleoenvironmental meaning. South African Journal of Science, 88, 227–229.Google Scholar
  17. Brook, G. A., Scott, L., Railsback, B., & Goddard, E. A. (2010). A 35 ka pollen and isotope record of environmental change along the southern margin of the Kalahari from a stalagmite in Wonderwerk Cave, South Africa. Journal of Arid Environments, 74(5), 870–884.CrossRefGoogle Scholar
  18. Butzer, K. W. (1984a). Late Quaternary environments in South Africa. In J. C. Vogel (Ed.), Late Cainozoic palaeoclimates of the southern hemisphere (pp. 235–264). Rotterdam: Balkema.Google Scholar
  19. Butzer, K. W. (1984b). Archeology and quaternary environment in the interior of southern Africa. In R. G. Klein (Ed.), Southern African prehistory and paleoenvironments (pp. 1–64). Rotterdam and Boston: Balkema.Google Scholar
  20. Butzer, K. W., Stuckenrath, R., Bruzewicz, A. J., & Helgren, D. M. (1978). Late Cenozoic paleoclimates of the Gaap escarpment, Kalahari margin. Quaternary Research, 10, 310–339.CrossRefGoogle Scholar
  21. Camp, C. L. (1948). University of California Expedition – Southern section. Science, 108, 550–552.CrossRefGoogle Scholar
  22. Cooke, H. B. S. (1962). Notes on the faunal material from the Cave of Hearths and Kalkbank. In R. J. Mason (Ed.), Prehistory of the Transvaal (pp. 447–453). Johannesburg: Witwatersrand University Press.Google Scholar
  23. Cooke, H. B. S. (1963). Pleistocene mammal faunas of Africa, with particular reference to southern Africa. In F. C. Howell & F. Bourliere (Eds.), African ecology and human evolution (pp. 65–116). Chicago: Aldine.Google Scholar
  24. De Graaf, G. (1981). The rodents of southern Africa. Durban: Butterworths.Google Scholar
  25. Higuchi, R., Bowman, B., Freiberger, M., Ryder, O. A., & Wilson, A. C. (1984). DNA sequences from the quagga, an extinct member of the horse family. Nature, 312, 282–284.CrossRefGoogle Scholar
  26. Higuchi, R. G., Wrischnik, L. A., Oakes, E., George, M., Tong, B., & Wilson, A. C. (1987). Mitochondrial DNA of the extinct quagga: Relatedness and extent of postmortem change. Journal of Molecular Evolution, 25, 283–287.CrossRefGoogle Scholar
  27. Humphreys, A.J.B. and Thackeray, A.I. (1983). Ghaap and Gariep: Later Stone Age studies in the northern Cape. South African Archaeological Society Monograph Series, Number 2. Cape Town.Google Scholar
  28. Johnson, B. J., Miller, G. H., Fogel, M. L., & Beaumont, P. B. (1997). The determination of late Quaternary paleoenvironments at Equus Cave, South Africa, using stable isotopes and amino acid racemization in ostrich eggshell. Palaeogeography Palaeoclimatology Palaeoecology, 136, 121–137.CrossRefGoogle Scholar
  29. Klein, R. G. (1980). Environmental and ecological implications of large mammals from Upper Pleistocene and Holocene sites in southern Africa. Annals of the South African Museum, 81, 223–283.Google Scholar
  30. Leonard, J. A., Rohland, N., Glaberman, S., Fleischer, R. C., Caccone, A., & Hofreiter, M. (2005). A rapid loss of stripes: The evolutionary history of the extinct quagga. Proceedings of the Royal Society of London, Biology Letters, 1, 291–295.Google Scholar
  31. Lyman, R. L. (2008). Quantitative paleozoology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  32. Malan, B. D. (1944). Fieldnotes and report on excavations at Wonderwerk cave. Archaeological Survey File B20/1/1. Pretoria: Government Archives.Google Scholar
  33. Malan, B. D., & Cooke, H. B. S. (1941). A preliminary account of the Wonderwerk Cave, Kuruman District. South African Journal of Science, 37, 300–312.Google Scholar
  34. Malan, B. D., & Wells, L. H. (1943). A further account on the Wonderwerk cave, Kuruman. South African Journal of Science, 40, 258–270.Google Scholar
  35. Orlando, L., et al. (2009). Revising the recent evolutionary history of equids using ancient DNA. Proceedings of the National Academy of Science, 106(51), 21754–21759.CrossRefGoogle Scholar
  36. Perkins, D., & Daly, P. (1968). A hunter’s village in Neolithic Turkey. Scientific American, 219(5), 96–106.CrossRefGoogle Scholar
  37. Rau, R. E. (1974). Revised list of the preserved material of the extinct Cape colony quagga, Equus quagga quagga (Gmelin). Annals. South African Museum, 65, 41–87.Google Scholar
  38. Rau, R. E. (1978). Additions to the revised list of preserved material of the extinct Cape colony quagga and notes on the relationship and distribution of southern plains zebras. Annals. South African Museum, 77, 27–45.Google Scholar
  39. Scott, L., & Thackeray, J. F. (1987). Multivariate analysis of late Pleistocene and Holocene pollen spectra from Wonderkrater, Transvaal, South Africa. South African Journal of Science, 83, 93–98.Google Scholar
  40. Scott, L., Neumann, F. H., Brook, G. A., Bousman, C. B., Norström, E., & Metwally, A. A. (2012). Terrestrial fossil-pollen evidence of climate change during the last 26 thousand years in southern Africa. Quaternary Science Reviews, 32, 100–118.CrossRefGoogle Scholar
  41. Thackeray, J. F. (1980). New approaches in interpreting archaeological faunal assemblages with examples from southern Africa. South African Journal of Science, 76, 216–223.Google Scholar
  42. Thackeray, J.F. (1984a). Man, animals and extinctions: The analysis of Holocene faunal remains from Wonderwerk Cave, South Africa. Ph.D. dissertation, Yale University.Google Scholar
  43. Thackeray, J. F. (1984b). Climatic change and mammalian fauna from Holocene deposits, Wonderwerk Cave. In J. C. Vogel (Ed.), Late Cainozoic palaeoclimates of the southern hemisphere (pp. 371–374). Rotterdam: Balkema.Google Scholar
  44. Thackeray, J. F. (1987a). Horns of Damaliscus niro from Wonderwerk Cave. Pal News, 5(3), 2–4.Google Scholar
  45. Thackeray, J. F. (1987b). Late Quaternary environmental changes inferred from small mammalian fauna, southern Africa. Climatic Change, 10, 285–305.CrossRefGoogle Scholar
  46. Thackeray, J. F. (1988). Zebras from Wonderwerk Cave, northern Cape Province: Attempts to distinguish Equus burchelli and E. quagga. South African Journal of Science, 84, 99–101.Google Scholar
  47. Thackeray, J. F. (1989). Found: Damaliscus niro horn from Wonderwerk Cave. Pal News, 6(3), 2–3.Google Scholar
  48. Thackeray, F. (1990a). More on Damaliscus niro from Wonderwerk Cave. Pal News, 6(4), 3–4.Google Scholar
  49. Thackeray, J. F. (1990b). Carnivore activity at Klasies River Mouth: A response to Binford. Palaeontologia Africana, 27, 101–109.Google Scholar
  50. Thackeray, J. F. (1997a). Does the taxonomy of the quagga really need to be reconsidered? South African Journal of Science, 93, 68.Google Scholar
  51. Thackeray, J. F. (1997b). Morphometric, palaeoecological and taxonomic considerations of southern African zebras: attempts to distinguish the quagga. South African Journal of Science, 93, 89–93.Google Scholar
  52. Thackeray, J. F. (2005). The wounded roan: a contribution to the relation of hunting and trance in southern African rock art. Antiquity, 79, 5–18.Google Scholar
  53. Thackeray, J. F. (2007). Hominids and carnivores at Kromdraai and other Quaternary sites in southern Africa. In T. R. Pickering, K. Schick, & N. Toth (Eds.), Breathing life into fossils: Taphonomic studies in honor of C.K. (Bob) Brain (pp. 43–49). Bloomington: Stone Age Institute Press.Google Scholar
  54. Thackeray, J. F. (2010). Ancient DNA from fossil equids: A milestone in palaeogenetics. South African Journal of Science, 106, 1–2.CrossRefGoogle Scholar
  55. Thackeray, J. F. (2013). The principle of “sympathetic magic” in the context of hunting, trance and Southern African rock art. The Digging Stick., 30(1), 1–4.Google Scholar
  56. Thackeray, J. F., & Brink, J. S. (2004). Damaliscus niro horns from Wonderwerk Cave and other Pleistocene sites: Morphological and chronological considerations. Palaeontologia Africana, 40, 89–93.Google Scholar
  57. Thackeray, J. F., & Lee-Thorp, J. A. (1992). Isotopic analysis of equid teeth from Wonderwerk Cave, northern Cape Province, South Africa. Palaeogeography Palaeoclimatology Palaeoecology, 99, 141–150.CrossRefGoogle Scholar
  58. Thackeray, J. F., & Scott, L. (2006). The Younger Dryas in the Wonderkrater sequence, South Africa? Annals of the Transvaal Museum, 43, 111–112.Google Scholar
  59. Thackeray, A. I., Thackeray, J. F., Beaumont, P. B., & Vogel, J. C. (1981). Dated rock engravings from Wonderwerk Cave, South Africa. Science, 214, 64–67.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Evolutionary Studies Institute and School of GeosciencesUniversity of the Witwatersrand, PO WITSJohannesburgSouth Africa

Personalised recommendations