African Archaeological Review

, Volume 32, Issue 2, pp 267–299 | Cite as

Forging Ahead By Land and By Sea: Archaeology and Paleoclimate Reconstruction in Madagascar

  • Kristina DouglassEmail author
  • Jens Zinke
Original Article


Madagascar is an exceptional example of island biogeography. Though a large island, Madagascar’s landmass is small relative to other places in the world with comparable levels of biodiversity, endemicity, and topographic and climatic variation. Moreover, the timing of Madagascar’s human colonization and the social-ecological trajectories that followed human arrival make the island a unique case study for understanding the dynamic relationship between humans, environment, and climate. These changes are most famously illustrated by the mass extinction of the island’s megafauna but also include a range of other developments. Given the chronological confluence of human arrival and dramatic transformations of island ecologies, one of the most important overarching questions for research on Madagascar is how best to understand the interconnections between human communities, the environment, and climate. In this review paper, we contribute to the well-established discussion of this complex question by highlighting the potential for new multidisciplinary research collaborations in the southwest part of the island. Specifically, we promote the comparison of paleoclimate indicators from securely dated archaeological and paleontological contexts with Western Indian Ocean climate records, as a productive way to improve the overall resolution of paleoclimate and paleoenvironmental reconstruction for the island. Given new archaeological findings that more than double the length of Madagascar’s human occupation, models of environmental transformation post-human arrival must be reassessed and allow for the possibility of slower and more varied rates of change. Improving the spatial and temporal resolution of paleoclimate reconstruction is critical in distinguishing anthropogenic and climate drivers of environmental change. It will also increase our capacity to leverage archaeological and paleoclimate research toward resolving modern challenges, such as environmental conservation and poverty alleviation.


Madagascar Archaeology Paleoclimate Island colonization Isotopes Corals Ratite eggshell 


Madagascar représente un cas exceptionnel de biogéographie insulaire. Bien que ce soit une très grande île, la superficie de Madagascar est relativement petite quand on la compare à d’autres régions ayant des taux similaires de biodiversité et d’endémicité, et témoignant d’une telle diversité topographique et climatique. Par ailleurs, la période pendant laquelle s’est opérée la colonisation humaine de Madagascar, ainsi que les développements socio-écologiques qui se sont ensuivis font de cette île un objet d’étude idéal pour comprendre les dynamiques de la relation entre les humains, l’environnement et le climat. Ces changements sont notoirement illustrés par la disparition totale de la mégafaune de l’île, mais d’autres évolutions importantes sont également à souligner. Etant donné la convergence chronologique de l’arrivée de l’Homme et des transformations radicales de l’écologie de l’île, une des questions centrales de la recherche sur Madagascar vise la compréhension de la nature de l’interaction entre les communautés humaines, l’environnement et le climat. Dans cet article, nous contribuons à la discussion déjà éprouvée de cette question difficile en dévoilant de nouvelles opportunités de collaborations multidisciplinaires, notamment dans la région sud-ouest de Madagascar. Nous proposons en particulier d’utiliser la comparaison de données paléoclimatiques provenant de sites archéologiques et paléontologiques ayant une chronologie établie avec les archives climatiques de l’océan Indien comme un moyen efficace d’améliorer la résolution des reconstructions paléoclimatiques et paléoenvironnementales de l’île. Considérant les dernières datations archéologiques qui doubleraient la durée de l’occupation humaine de Madagascar, nous nous devons de réexaminer les théories de transformation environnementale causée par l’arrivée de l’Homme et d’envisager la possibilité de changements qui se seraient opérés plus lentement et de diverses manières. L’amélioration de la résolution spatiale et temporelle des reconstructions paléoclimatiques à Madagascar est essentielle pour permettre de faire la différence entre les facteurs anthropiques et les facteurs climatiques, quant à leur rôle comme source de transformations environnementales de l’île. Cela nous permettra également de nous appuyer sur le savoir archéologique et paléoclimatique afin de répondre aux grands défis de nos jours, tels que la conservation de l’environnement et la lutte contre la pauvreté.



The archaeological investigations carried out in the region of Andavadoaka were made possible with funding from the US National Science Foundation Graduate Research Fellowship Program, the P.E.O. Scholar Award, the Yale Institute of Biospheric Studies, the Yale MacMillan Center for International and Area Studies, and the Yale Council on Archaeological Studies. Research permissions were granted by the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique, Autorisation Numéro 128/13-MESupReS/SG/DGRP, by the Centre de Documentation et de Recherche sur l’Art et les Traditions Orales Malgaches (CEDRATOM), under the auspices of the Memorandum of Understanding between the University of Toliara, under the direction of Dr. Barthélémy Manjakahery, Director of the CEDRATOM, and Yale University, under the direction of Dr. Roderick McIntosh, Professor of Anthropology. Local permission to carry out archaeological research was granted by the Office du Maire, Commune de Befandefa and by the Chefs de Fokontany of Andavadoaka, Nosy Ve, Antsaragnagnangy, Lamboharana, Ampasilava, and Salary. Permits for the export of archaeological materials for the purposes of laboratory analysis were granted by the Secretariat Général of the Ministère de l’Artisanat de la Culture et des Patrimoines, Direction Régionale de la Culture et du Patrimoine Atsimo Andrefana, Visas de Sorties Numéro 09/06-MCP/SG/DRCP.AA; Numéro 05/14-MACP/SG/DRCP.AA; Numéro 08/14-MACP/SG/DRCP.AA in accordance with Avis Numéro 375, 02/02/1978. Special thanks go to Mr. Noel Robinson, Maire Fostin Venince Radrianasolo of Befandefa, 2ème Adjoint au Maire Adolphe Ediedy, Président Eugène Radafinely of Andavadoaka, Président Lamely Sony of Nosy Ve, Président Ziriele of Antsaragnagnangy, Président Joseph Rabesolo of Lambohara, Président Venance of Ampasilava, Président Jean-Armand Havandrainy of Salary, Président Roger Samba of the Velondriake Association, Conseiller Fostin Maharesy, Mr. Archant Zanista, Mr. George Manahira, Mrs. Felicia Fenomanana, the Morombe Archaeological Project Team, the communities of Velondriake and Blue Ventures, Dr. Chantal Radimilahy, Dr. Henry Wright, and the late Dr. Robert Dewar.

The coral paleoclimate work was supported as part of the SINDOCOM grant under the Dutch NWO program ‘Climate Variability’, grant 854.00034/035. Additional support comes from the NWO ALW project CLIMATCH, grant 820.01.009, and the Western Indian Ocean Marine Science Association through the Marine Science for Management program under grant MASMA/CC/2010/02. We thank the Wildlife Conservation Society (WCS) Madagasacar, especially Bemahafaly Randriamantsoa and the WCS/ANGAP team in Maroantsetra, for their support in fieldwork logistics and in the organization of the research permits. We would also like to thank CAF/CORE Madagascar for granting the CITES permit and ANGAP Madagascar for support of our research activities in the vicinity of the marine and forest nature parks. JZ was also supported by an Indian Ocean Marine Research Center fellowship co-funded by UWA, AIMS and CSIRO in Western Australia.


  1. Adelaar, S. (2010). The story of Malagasy. In Research center for linguistic typology (pp. 1–8). Melbourne: Research Center for Linguistic Typology.Google Scholar
  2. Allentoft, M. E., Heller, R., Oskam, C. L., Lorenzen, E. D., Hale, M. L., Gilbert, M. T. P., Jacomb, C., Holdaway, R. N., & Bunce, M. (2014). Extinct New Zealand megafauna were not in decline before human colonization. Proceedings of the National Academy of Sciences, 111(13), 4922–4927.Google Scholar
  3. Alley, R. B., Marotzke, J., Nordhaus, W. D., Overpeck, J. T., Peteet, D. M., Pielke, R. A., Pierrehumbert, R. T., Rhines, P. B., Stocker, T. F., Talley, L. D., & Wallace, J. M. (2003). Abrupt climate change. Science, 299(5615), 2005–2010.Google Scholar
  4. Anderson, A. (1989). Mechanics of overkill in the extinction of New Zealand moa. Journal of Archaeological Science, 16, 137–151.Google Scholar
  5. Balée, W. L. (Ed.). (1998). Advances in historical ecology. New York: Columbia University Press.Google Scholar
  6. Balme, J., Davidson, I., McDonald, J., Stern, N., & Veth, P. (2009). Symbolic behaviour and the peopling of the southern arc route to Australia. Quaternary International, 202(1–2), 59–68.Google Scholar
  7. Bard, E., & Rickaby, R. E. M. (2009). Migration of the subtropical front as a modulator of glacial climate. Nature, 460(7253), 380–383.Google Scholar
  8. Battistini, R., & Verin, P. (1964). A propos d’une datation au radiocarbons du gisement de subfossiles d’Itampolo (Extrême-Sud De Madagascar). Bulletin De La Société Préhistorique Française, 61(8), 183–185.Google Scholar
  9. Beal, L. M., De Ruijter, W. P. M., Biastoch, A., & Zahn, R. (2011). On the role of the Agulhas system in ocean circulation and climate. Nature, 472(7344), 429–346.Google Scholar
  10. Beaujard, P. (2003). Les arrivées austronésiennes à Madagascar: Vagues ou continuum? Etudes Océan Indien, 35–36, 59–128.Google Scholar
  11. Beaujard, P. (2007). East Africa, the Comoros Islands and Madagascar before the sixteenth century on a neglected part of the world-system. Azania, 42, 15–35.Google Scholar
  12. Beaujard, P. (2011). The first migrants to Madagascar and their introduction of plants: Linguistic and ethnological evidence. Azania, 46, 169–189.Google Scholar
  13. Bellwood, P. S., Fox, J. J., & Tryon, D. (1995). The Austronesians: Historical and comparative perspectives. Canberra: Dept. of Anthropology as part of the Comparative Austronesian Project, Research School of Pacific and Asian Studies, Australian National University.Google Scholar
  14. Berkes, F., & Folke, C. (2002). Navigating social-ecological systems: Building resilience for complexity and change. Cambridge: Cambridge University Press.Google Scholar
  15. Bird, M. I., Hutley, L. B., Lawes, M. J., Lloyd, J., Luly, J. G., Ridd, P. V., Roberts, R. G., Ulm, S., & Wurster, C. M. (2013). Humans, megafauna and environmental change in tropical Australia. Journal of Quaternary Science, 28(5), 439–452.Google Scholar
  16. Blasiak, L. C., Schmidt, A. W., Andriamiarinoro, H., Mulaw, T., Rasolomampianina, R., Applequist, W. L., Birkinshaw, C., Rejo-Fienena, F., Lowry, P. P., Schmidt, T. M., & Hill, R. T. (2014). Bacterial communities in Malagasy soils with differing levels of disturbance affecting botanical diversity. PloS One, 9(1), 1–11.Google Scholar
  17. Blench, R. (2007). New palaeozoogeographical evidence for the settlement of Madagascar. Azania, 42, 69–82.Google Scholar
  18. Bodin, Ö., & Tengö, M. (2012). Disentangling intangible social–ecological systems. Global Environmental Change, 22(2), 430–439.Google Scholar
  19. Boivin, N., Crowther, A., Helm, R., & Fuller, D. Q. (2013). East Africa and Madagascar in the Indian Ocean world. Journal of World Prehistory, 26(3), 213–281.Google Scholar
  20. Bond, W. J., Silander, J. A. J., Ranaivonasy, J., & Ratsirarson, J. (2008). The antiquity of Madagascar’s grasslands and the rise of C 4 grassy biomes. Journal of Biogeography, 35(10), 1743–1758.Google Scholar
  21. Braje, T. J., & Erlandson, J. M. (2013). Human acceleration of animal and plant extinctions: A late Pleistocene, Holocene, and Anthropocene continuum. Anthropocene, 4, 14–23.Google Scholar
  22. Braje, T. J., Erlandson, J. M., Aikens, C. M., Beach, T., Fitzpatrick, S., Gonzalez, S., Kennett, D. J., Kirch, P. V., Lee, G.-A., Lightfoot, K., McClure, S. B., Panich, L. M., Rick, T. C., Roosevelt, A. C., Schneider, T. D., Smith, B., & Zeder, M. A. (2014). An Anthropocene without archaeology—Should we care? The SAA Archaeological Record, 1, 26–29.Google Scholar
  23. Brenner, M., Rosenmeier, M. F., Hodell, D. A., & Curtis, J. H. (2002). Paleolimnology of the Maya lowlands: Long-term perspectives on interactions among climate, environment, and humans. Ancient Mesoamerica, 13, 141–157.Google Scholar
  24. Brook, G. A., Sheen, S.-W., Rafter, M. A., Railsback, L. B., & Lundberg, J. (1999). A high-resolution proxy record of rainfall and ENSO since AD 1550 from layering in stalagmites from Anjohibe Cave, Madagascar. The Holocene, 9(6), 695–705.Google Scholar
  25. Brookfield, H., & Padoch, C. (1994). Appreciating agrodiversity: A look at the dynamism and diversity of indigenous farming practices. Environment: Science and Policy for Sustainable Development, 36(5), 6–45.Google Scholar
  26. Bruggemann, J. H., Rodier, M., Guillaume, M. M., Andréfouët, S., Arfi, R., Cinner, J. E., Pichon, M., Ramahatratra, F., Rasoamanendrika, F., Zinke, J., & McClanahan, T. R. (2012). Wicked social-ecological problems forcing unprecedented change on the latitudinal margins of coral reefs: The case of Southwest Madagascar. Ecology and Society, 17(4), 47.Google Scholar
  27. Burney, D. A. (1987a). Late Holocene vegetational change in central Madagascar. Quaternary Research, 28(1), 130–143.Google Scholar
  28. Burney, D. A. (1987b). Late Quaternary stratigraphic charcoal records from Madagascar. Quaternary Research, 28(2), 274–280.Google Scholar
  29. Burney, D. A. (1987c). Presettlement changes at Lake Tritrivakely, Madagascar. Palaeoecology of Africa, 18, 350–381.Google Scholar
  30. Burney, D. A. (1996). Climate change and fire ecology as factors in the Quaternary biogeography of Madagascar. In W. R. Lourenco (Ed.), Biogéographie de Madagascar (pp. 49–58). Paris: ORSTOM.Google Scholar
  31. Burney, D. A. (1997). Tropical islands as paleoecological laboratories: Gauging the consequences of human arrival. Human Ecology, 25(3), 437–457.Google Scholar
  32. Burney, D. A. (1999). Rates, patterns, and processes of landscape transformation and extinction in Madagascar. In R. D. E. MacPhee (Ed.), Extinction in near time (pp. 145–164). New York: Kluwer/Plenum.Google Scholar
  33. Burney, D. A., & Flannery, T. F. (2005). Fifty millennia of catastrophic extinctions after human contact. Trends in Ecology & Evolution, 20(7), 395–401.Google Scholar
  34. Burney, D. A., & Flannery, T. F. (2006). Response to Wroe et al.: Island extinctions versus continental extinctions. Trends in Ecology & Evolution, 21(2), 63–64.Google Scholar
  35. Burney, D. A., James, H. F., Grady, F. V., Rafamantanantsoa, J.-G., Ramilisonina, Wright, H. T., & Cowart, J. B. (1997). Environmental change, extinction and human activity: Evidence from caves in NW Madagascar. Journal of Biogeography, 24(6), 755–767.Google Scholar
  36. Burney, D. A., Robinson, G. S., & Burney, L. P. (2003). Sporormiella and the Late Holocene extinctions in Madagascar. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 10800–10805.Google Scholar
  37. Burney, D. A., Burney, L. P., Godfrey, L. R., Jungers, W. L., Goodman, S. M., Wright, H. T., & Jull, A. J. T. (2004). A chronology for late prehistoric Madagascar. Journal of Human Evolution, 47(1–2), 25–63.Google Scholar
  38. Burns, S. J., Fleitmann, D., Matter, A., Kramers, J., & Al-Subbary, A. A. (2003). Indian Ocean climate and an absolute chronology over Dansgaard/Oeschger Events 9 To 13. Science (New York, N.Y.), 301(5638), 1365–1367.Google Scholar
  39. Camoin, G. F., Montaggioni, L. F., & Braithwaite, C. J. R. (2004). Late glacial to post glacial sea levels in the Western Indian Ocean. Marine Geology, 206(1–4), 119–146.Google Scholar
  40. Caseldine, C. J., & Turney, C. (2010). The bigger picture: Towards integrating palaeoclimate and environmental data with a history of societal change. Journal of Quaternary Science, 25(1), 88–93.Google Scholar
  41. Chami, F. A. (2001). Chicken bone from Neolithic limestone cave site, Zanzibar. In F. A. Chami, G. Pwiti, & C. Radimilahy (Eds.), Contacts and the environment in the African past (pp. 84–97). Dar Es-Salaam: DUP Press.Google Scholar
  42. Cinner, J. E., MacNeil, M. A., Basurto, X., & Gelcich, S. (2013). Looking beyond the fisheries crisis: Cumulative learning from small-scale fisheries through diagnostic approaches. Global Environmental Change, 23(6), 1359–1365.Google Scholar
  43. Clark, G., & Reepmeyer, C. (2012). Last millennium climate change in the occupation and abandonment of Palau’s Rock Islands. Archaeology in Oceania, 47(1), 29–38.Google Scholar
  44. Clarke, S. J., Miller, G. H., Fogel, M. L., Chivas, A. R., & Murray-Wallace, C. V. (2006). The amino acid and stable isotope biogeochemistry of elephant bird (Aepyornis) eggshells from southern Madagascar. Quaternary Science Reviews, 25(17–18), 2343–2356.Google Scholar
  45. Cooper, J., & Sheets, P. (Eds.). (2012). Surviving sudden environmental change: Answers from archaeology. Boulder: University of Colorado Press.Google Scholar
  46. Cox, M. P., Nelson, M. G., Tumonggor, M. K., Ricaut, F.-X., & Sudoyo, H. (2012). A small cohort of island Southeast Asian women founded Madagascar. Proceedings of the Royal Society Biological Sciences, 279(1739), 2761–2768.Google Scholar
  47. Cremaschi, M., & Lernia, S. D. (1999). Holocene climatic changes and cultural dynamics in the Libyan Sahara. African Archaeological Review, 16(4), 211–238.Google Scholar
  48. Cristoffer, C., & Peres, C. A. (2003). Elephants versus butterflies: The ecological role of large herbivores in the evolutionary history of two tropical worlds. Journal of Biogeography, 30(9), 1357–1380.Google Scholar
  49. Crowley, B. E. (2010). A refined chronology of prehistoric Madagascar and the demise of the megafauna. Quaternary Science Reviews, 29(19–20), 2591–2603.Google Scholar
  50. Crowley, B. E., & Samonds, K. E. (2013). Stable carbon isotope values confirm a recent increase in grasslands in northwestern Madagascar. The Holocene, 23(7), 1066–1073.Google Scholar
  51. Crowley, B. E., Godfrey, L. R., & Irwin, M. T. (2011). A glance to the past: Subfossils, stable isotopes, seed dispersal, and lemur species loss in southern Madagascar. American Journal of Primatology, 73(1), 25–37.Google Scholar
  52. Crueger, T., Zinke, J., & Pfeiffer, M. (2008). Patterns of Pacific decadal variability recorded by Indian Ocean corals. International Journal of Earth Sciences, 98(1), 41–52.Google Scholar
  53. D’Escamps, H. (1884). Histoire et géographie de Madagascar. Paris: Firmin-Didot et Cie.Google Scholar
  54. Dahl, O. (1977). La subdivision de la famille Barito et la place du Malgache. Acta Orientalia, 38, 77–134.Google Scholar
  55. Davies, M. I. J. (2012). Some thoughts on a “useable” African archaeology: Settlement, population and intensive farming among the Pokot of Northwest Kenya. African Archaeological Review, 29(4), 319–353.Google Scholar
  56. Davis, O. K., & Shafer, D. S. (2006). Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeography Palaeoclimatology Palaeoecology, 237(1), 40–50.Google Scholar
  57. De Boer, E. J., Tjallingii, R., Vélez, M. I., Rijsdijk, K. F., Vlug, A., Reichart, G.-J., Prendergast, A. L., de Louw, P. G. B., Florens, F. B. V., Baider, C., & Hooghiemstra, H. (2014). Climate variability in the SW Indian Ocean from an 8000-yr long multi-proxy record in the Mauritian lowlands shows a middle to late Holocene shift from negative IOD-state to ENSO-state. Quaternary Science Reviews, 86, 175–189.Google Scholar
  58. De Flacourt, E. (2007). Histoire de la grande isle Madagascar. Paris: INALCO: Karthala.Google Scholar
  59. De la Bâthie, H. P. (1921). La végétation malgache. Annales Du Musée Colonial de Marseille, 9, 1–266.Google Scholar
  60. De Wit, M. J. (2003). Madagascar: Heads it’s a continent, tails it’s an island. Annual Review of Earth and Planetary Sciences, 31(1), 213–248.Google Scholar
  61. Denevan, W. (1992). The pristine myth: The landscape of the Americas in 1492. Annals of the Association of American Geographers, 82(3), 369–385.Google Scholar
  62. Dewar, R. E. (1997). Does it matter that Madagascar is an island? Human Ecology, 25(3), 481–489.Google Scholar
  63. Dewar, R. E., & Rakotovololona, H. (1992). La chasse aux subfossiles: Les preuves du XIème siècle au XIIIème Siècle. Taloha, 11, 4–15.Google Scholar
  64. Dewar, R. E., & Richard, A. F. (2007). Evolution in the hypervariable environment of Madagascar. Proceedings of the National Academy of Sciences of the United States of America, 104(34), 13723–13727.Google Scholar
  65. Dewar, R. E., & Richard, A. F. (2012). Madagascar: A history of arrivals, what happened, and will happen next. Annual Review of Anthropology, 41(1), 495–517.Google Scholar
  66. Dewar, R. E., & Wright, H. T. (1993). The culture history of Madagascar. Journal of World Prehistory, 7(4), 417–466.Google Scholar
  67. Dewar, R. E., Radimilahy, C., Wright, H. T., Jacobs, Z., Kelly, G. O., & Berna, F. (2013). Stone tools and foraging in northern Madagascar challenge Holocene extinction models. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12583–12588.Google Scholar
  68. Diamond, J. (2011). Collapse: How societies choose to fail or succeed. New York: Penguin.Google Scholar
  69. Dixit, Y., Hodell, D. A., Sinha, R., & Petrie, C. A. (2014). Abrupt weakening of the Indian summer monsoon at 8.2 kyr B.P. Earth and Planetary Science Letters, 391, 16–23.Google Scholar
  70. Du Puy, D. J., & Moat, J. (2003). Using geological substrate to identify and map primary vegetation types in Madagascar and the implications for planning biodiversity conservation. In S. M. Goodman & J. P. Benstead (Eds.), The natural history of Madagascar (pp. 51–67). Chicago: University of Chicago Press.Google Scholar
  71. Duplantier, J.-M., Orth, A., Catalan, J., & Bonhomme, F. (2002). Evidence for a mitochondrial lineage originating from the Arabian peninsula in the Madagascar house mouse (Mus musculus). Heredity, 89(2), 154–8.Google Scholar
  72. Flannery, T. (1990). Pleistocene faunal loss: Implications of the aftershock for Australia’s past and future. Archaeology in Oceania, 25(2), 45–55.Google Scholar
  73. Fleitmann, D., Burns, S. J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., Al-Subbary, A. A., Buettner, A., Hippler, D., & Matter, A. (2007). Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews, 26(1), 170–188.Google Scholar
  74. Flenley, J. R., & King, S. M. (1984). Late Quaternary pollen records from Easter Island. Nature, 307(5946), 47–50.Google Scholar
  75. Florens, V. F. B. (2013). Conservation in Mauritius and Rodrigues: Challenges and achievements from two ecologically devastated oceanic islands. In P. H. Raven, N. S. Sodhi, & L. Gibson (Eds.), Conservation biology: Voices from the tropics. Oxford: Wiley.Google Scholar
  76. Fox, J. M. (2000). How blaming “slash and burn” farmers is deforesting mainland Southeast Asia. Asia Pacific Issues, 47, 1–8.Google Scholar
  77. Fraser, E. D. G., Simelton, E., Termansen, M., Gosling, S. N., & South, A. (2013). “Vulnerability hotspots”: Integrating socio-economic and hydrological models to identify where cereal production may decline in the future due to climate change induced drought. Agricultural and Forest Meteorology, 170, 195–205.Google Scholar
  78. Fuller, D. Q., & Boivin, N. (2009). Crops, cattle and commensals across the Indian Ocean. Études Océan Indien, 42–43, 13–46.Google Scholar
  79. Fuller, D. Q., Boivin, N., Hoogervorst, T., & Allaby, R. (2011). Across the Indian Ocean: The prehistoric movement of plants and animals. Antiquity, 85(328), 544–558.Google Scholar
  80. Funk, M. (2014). Windfall: The booming business of global warming. New York: Penguin Press HC.Google Scholar
  81. Gabrié, C., Vasseur, P., Randriamiarana, H., Maharavo, J., & Mara, E. (2000). The coral reefs of Madagascar. In T. McClanahan, C. R. C. Sheppard, & D. O. Obura (Eds.), Coral reefs of the Indian Ocean: Their ecology and conservation (pp. 411–445). Oxford: Oxford University Press.Google Scholar
  82. Gade, D. W. (1996). Deforestation and its effects in Highland Madagascar. Mountain Research and Development, 16(2), 101–116.Google Scholar
  83. Garfinkel, A. P., Young, D. A., & Yohe, R. M. (2010). Bighorn hunting, resource depression, and rock art in the Coso Range, eastern California: A computer simulation model. Journal of Archaeological Science, 37(1), 42–51.Google Scholar
  84. Gasse, F., & Van Campo, E. (1998). A 40,000-yr pollen and diatom record from Lake Tritrivakely, Madagascar, in the southern tropics. Quaternary Research, 49(3), 299–311.Google Scholar
  85. Gautier, L., & Goodman, S. M. (2003). Introduction to the flora of Madagascar. In S. M. Goodman & J. P. Benstead (Eds.), The natural history of Madagascar (pp. 229–250). Chicago: University of Chicago Press.Google Scholar
  86. Gelorini, V., & Verschuren, D. (2013). Historical climate-human-ecosystem interaction in East Africa: A review. African Journal of Ecology, 51(3), 409–421.Google Scholar
  87. Gommery, D., Sénégas, F., Mein, P., Tombomiadana, S., Ramanivosoa, B., Cauvin, J., & Cauvin, C. (2003). Résultats préliminaires des sites subfossiles d’Antsingiavo (Madagascar). Comptes Rendus Palevol, 2(8), 639–648.Google Scholar
  88. Gommery, D., Ramanivosoa, B., Faure, M., Guérin, C., Kerloc’h, P., Sénégas, F., & Randrianantenaina, H. (2011). Les plus anciennes traces d’activités anthropiques de Madagascar sur des ossements d’hippopotames subfossiles d’Anjohibe (Province de Mahajanga). Comptes Rendus Palevol, 10(4), 271–278.Google Scholar
  89. Goodman, S. M., & Benstead, J. P. (Eds.). (2003). The natural history of Madagascar. Chicago: University of Chicago Press.Google Scholar
  90. Goodman, S. M., & Jungers, W. L. (2013). Les animaux et ecosystèmes de l’Holocène disparus de Madagascar. Antananarivo: Association Vahatra.Google Scholar
  91. Goodman, S. M., Vasey, N., & Burney, D. A. (2006). The subfossil occurrence and paleoecological implications of macrotarsomys Petteri (Rodentia: Nesomyidae) in extreme southeastern Madagascar. Comptes Rendus Palevol, 5(8), 953–962.Google Scholar
  92. Goodman, S. M., Raherilalao, M. J., & Muldoon, K. (2013). Bird fossils from Ankilitelo Cave: Inference about Holocene environmental changes in southwestern Madagascar. Zootaxa, 3750(5), 534–548.Google Scholar
  93. Gore, A. (2006). An inconvenient truth: The planetary emergency of global warming and what we can do about it. New York: Rodale Books.Google Scholar
  94. Grandidier, A. (1901). L’origine des Malgaches. Paris: Hachette et Cie.Google Scholar
  95. Grosjean, M., Núñez, L., & Cartajena, I. (2005). Cultural response to climate change in the Atacama Desert. In P. P. Hesse (Ed.), The archaeology and environmental history of the southern deserts (pp. 156–171). National Museum of Australia Press.Google Scholar
  96. Grove, C. A., Kasper, S., Zinke, J., Pfeiffer, M., Garbe-Schönberg, D., & Brummer, G.-J. A. (2013a). Confounding effects of coral growth and high SST variability on skeletal Sr/Ca: Implications for coral paleothermometry. Geochemistry, Geophysics, Geosystems, 14(4), 1277–1293.Google Scholar
  97. Grove, C. A., Zinke, J., Peeters, F., Park, W., Scheufen, T., Kasper, S., Randriamanantsoa, B., McCulloch, M. T., & Brummer, G.-J. A. (2013b). Madagascar corals reveal Pacific multidecadal modulation of rainfall since 1708. Climate of the Past, 9, 641–656.Google Scholar
  98. Gunn, J. D., & Folan, W. J. (2000). Three rivers: Subregional variations in Earth systems impacts in the southwestern Maya Lowlands (Candelaria, Usumacinta, And Champotón Watersheds). In R. J. McIntosh, J. A. Tainter, & S. K. McIntosh (Eds.), The way the wind blows: Climate, history, and human action (pp. 223–270). New York: Columbia University Press.Google Scholar
  99. Hanotte, O., Bradley, D. G., Ochieng, J. W., Verjee, Y., Hill, E. W., & Rege, J. E. O. (2002). African pastoralism: Genetic imprints of origins and migrations. Science, 296(5566), 336–339.Google Scholar
  100. Harris, A., Manahira, G., Sheppard, A., Gough, C., & Sheppard, C. (2010). Demise of Madagascar’s once great barrier reef: Change in coral reef condition over 40 years. Atoll Research Bulletin, 574, 1–16.Google Scholar
  101. Hingston, M., Goodman, S. M., Ganzhorn, J. U., & Sommer, S. (2005). Reconstruction of the colonization of southern Madagascar by introduced Rattus rattus. Journal of Biogeography, 32(9), 1549–1559.Google Scholar
  102. Hodder, I. (2012). Entangled: An archaeology of the relationships between humans and things. Malden: Wiley-Blackwell.Google Scholar
  103. Hoerling, M., Hurrell, J., Eischeid, J., & Phillips, A. (2006). Detection and attribution of twentieth-century northern and southern African rainfall change. Journal of Climate, 19(16), 3989–4008.Google Scholar
  104. Hogg, A. (2013). SHCal13 southern hemisphere calibration, 0–50,000 years cal BP. Radiocarbon, 55(4), 1889–1903.Google Scholar
  105. Huffman, T. N. (2008). Climate change during the iron age in the Shashe-Limpopo Basin, Southern Africa. Journal of Archaeological Science, 35(7), 2032–2047.Google Scholar
  106. Hughes, T. P., Bellwood, D. R., Folke, C., Steneck, R. S., & Wilson, J. (2005). New paradigms for supporting the resilience of marine ecosystems. Trends in Ecology & Evolution, 20(7), 380–386.Google Scholar
  107. Hughes, S., Yau, A., Max, L., Petrovic, N., Davenport, F., Marshall, M., McClanahan, T. R., Allison, E. H., & Cinner, J. E. (2012). A framework to assess national level vulnerability from the perspective of food security: The case of coral reef fisheries. Environmental Science & Policy, 23, 95–108.Google Scholar
  108. Humbert, H. (1927). La destruction d’une flore insulaire par le feu. Principaux aspects de la végétation à Madagascar. Documents photographiques et notices. Mémoires de I’Académie Malgache, 5, 1–80.Google Scholar
  109. Hunt, T. L. (2007). Rethinking Easter Island’s ecological catastrophe. Journal of Archaeological Science, 34(3), 485–502.Google Scholar
  110. Hurles, M. E., Sykes, B. C., Jobling, M. A., & Forster, P. (2005). The dual origin of the Malagasy in island Southeast Asia and East Africa: Evidence from maternal and paternal lineages. American Journal of Human Genetics, 76(5), 894–901.Google Scholar
  111. Hutterer, R., & Tranier, M. (1990). The immigration of the Asian house shrew (Suncus murinus) into Africa and Madagascar. In G. Peters & R. Hutterer (Eds.), Vertebrates in the tropics (pp. 309–319). Bonn: Museum Alexander Koenig.Google Scholar
  112. Jones, C. G., Lawton, J. H., & Shachak, M. (1996). Organisms as ecosystem engineers. Oikos, 69, 376–386.Google Scholar
  113. Jury, M. R. (2003). The climate of Madagascar. In S. M. Goodman & J. P. Benstead (Eds.), The natural history of Madagascar (pp. 75–88). Chicago: The University of Chicago Press.Google Scholar
  114. Kirch, P. V. (1997). Microcosmic histories: Island perspectives on “global” change. American Anthropologist, 99(1), 30–42.Google Scholar
  115. Kirch, P. V. (2000). On the road of the winds. Berkeley: University of California Press.Google Scholar
  116. Kirch, P. V. (2010). Peopling of the Pacific: A holistic anthropological perspective. Annual Review of Anthropology, 39(1), 131–148.Google Scholar
  117. Klein, J. (2002). Deforestation in the Madagascar highlands—Established ‘truth’ and scientific uncertainty. GeoJournal, 56(3), 191–199.Google Scholar
  118. Kolbert, E. (2014). The sixth extinction: An unnatural history. New York: Henry Holt and Co.Google Scholar
  119. Kull, C. A. (2002). Madagascar aflame: Landscape burning as peasant protest, resistance, or a resource management tool? Political Geography, 21(7), 927.Google Scholar
  120. Kull, C. A., Tassin, J., Moreau, S., Rakoto Ramiarantsoa, H., Blanc-Pamard, C., & Carrière, S. M. (2011). The introduced flora of Madagascar. Biological Invasions, 14(4), 875–888.Google Scholar
  121. Larson, P. M. (2009). Ocean of letters: Language and creolization in an Indian Ocean diaspora. Cambridge: Cambridge University Press.Google Scholar
  122. Le Manach, F., Gough, C., Harris, A., Humber, F., Harper, S., & Zeller, D. (2012). Unreported fishing, hungry people and political turmoil: The recipe for a food security crisis in Madagascar? Marine Policy, 36(1), 218.Google Scholar
  123. Leitão, H. (1970). Os dois descobrimentos da ilha De São Lourenço, mandados fazer pelo Vice-Rei D. Jerónimo de Azevedo nos anos de 1613 a 1616. Lisboa: Centro do Estudos Históricos Ultramarinos.Google Scholar
  124. Lilley, I. (Ed.). (2008). Archaeology of Oceania: Australia and the Pacific Islands. Oxford: Blackwell Studies in Global Archaeology.Google Scholar
  125. Logan, A. (2012). A history of food without history: Food, trade, and environment in west-central Ghana in the second millennium AD. PhD dissertation, University of Michigan.Google Scholar
  126. Lough, J. M. (2004). A strategy to improve the contribution of coral data to high-resolution paleoclimatology. Palaeogeography Palaeoclimatology Palaeoecology, 204(1), 115–143.Google Scholar
  127. MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography. Princeton: Princeton University Press.Google Scholar
  128. MacPhee, R., & Burney, D. (1991). Dating of modified femora of extinct dwarf hippopotamus from southern Madagascar: Implications for constraining human colonization and vertebrate extinction events. Journal of Archaeological Science, 18(6), 695–706.Google Scholar
  129. Maina, J., de Moel, H., Vermaat, J. E., Bruggemann, J. H., Guillaume, M. M. M., Grove, C. A., Madin, J. S., Mertz-Kraus, R., & Zinke, J. (2012). Linking coral river runoff proxies with climate variability, hydrology and land-use in Madagascar catchments. Marine Pollution Bulletin, 64(10), 2047–59.Google Scholar
  130. Maina, J., de Moel, H., Zinke, J., Madin, J., McClanahan, T., & Vermaat, J. E. (2013). Human deforestation outweighs future climate change impacts of sedimentation on coral reefs. Nature Communications, 4, 1986.Google Scholar
  131. Maldonado, A., Méndez, C., Ugalde, P., Jackson, D., Seguel, R., & Latorre, C. (2010). Early Holocene climate change and human occupation along the semiarid coast of north central Chile. Journal of Quaternary Science, 25(6), 985–988.Google Scholar
  132. Mann, D., Edwards, J., Chase, J., Beck, W., Reanier, R., Mass, M., Finney, B., & Loret, J. (2008). Drought, vegetation change, and human history on Rapa Nui (Isla De Pascua, Easter Island). Quaternary Research, 69(1), 16–28.Google Scholar
  133. Mariano, L. (1904). Relation du voyage de découverte fait à l’Ile Saint Laurent dans les années 1613–1614. In A. Grandidier & G. Guillaume (Eds.), Collections des ouvrages anciens concernant Madagascar, Volume 11 (pp. 1–64). Paris: Comité de. Madagascar.Google Scholar
  134. Martin, P. S. (1984). Prehistoric overkill: The global model. In P. S. Martin & R. G. Klein (Eds.), Quaternary extinctions: A prehistoric revolution (pp. 354–403). Tucson: University of Arizona Press.Google Scholar
  135. Matsumoto, K., & Burney, D. A. (1994). Late Holocene environments at Lake Mitsinjo, Northwestern Madagascar. The Holocene, 4(1), 16–24.Google Scholar
  136. Mavume, A., & Rydberg, L. (2009). Climatology and landfall of tropical cyclones in the south-west Indian Ocean. Western Indian Ocean Journal of Marine Science, 8(1), 15–36.Google Scholar
  137. McAnany, P. A., & Yoffee, N. (Eds.). (2009). Questioning collapse: Human resilience, ecological vulnerability, and the aftermath of empire. Cambridge: Cambridge University Press.Google Scholar
  138. McCann, J. (1999). Climate and causation in African history. The International Journal of African Historical Studies, 32(2/3), 261–279.Google Scholar
  139. McIntosh, R. J., Tainter, J. A., & McIntosh, S. K. (Eds.). (2000). The way the wind blows: Climate, history, and human action. New York: Columbia University Press.Google Scholar
  140. McNeil, C. L., Burney, D. A., & Burney, L. P. (2010). Evidence disputing deforestation as the cause for the collapse of the ancient Maya polity of Copan, Honduras. Proceedings of the National Academy of Sciences of the United States of America, 107(3), 1017–1022.Google Scholar
  141. Middleton, G. (2010). Madagascar 2009, new discoveries in the Beanka Reserve. Journal of the Sydney Speleological Society, 54(12), 333–345.Google Scholar
  142. Middleton, G. (2013). Madagascar 2012, Beanka, the far north. Journal of the Sydney Speleological Society, 57(8), 217–226.Google Scholar
  143. Mitchell, P. (2005). African connections: An archaeological perspective on Africa and the wider world. Walnut Creek: AltaMira Press.Google Scholar
  144. Muldoon, K. M. (2010). Paleoenvironment of Ankilitelo Cave (Late Holocene, southwestern Madagascar): Implications for the extinction of giant lemurs. Journal of Human Evolution, 58(4), 338–352.Google Scholar
  145. Muldoon, K. M., De Blieux, D. D., Simons, E. L., & Chatrath, P. S. (2009). The subfossil occurrence and paleoecological significance of small mammals at Ankilitelo Cave, southwestern Madagascar. Journal of Mammology, 90(5), 1111–1131.Google Scholar
  146. Mulrooney, M. A. (2013). An island-wide assessment of the chronology of settlement and land use on Rapa Nui (Easter Island) based on radiocarbon data. Journal of Archaeological Science, 40(12), 4377–4399.Google Scholar
  147. Nadon, M. O., Griffiths, D., Doherty, E., & Harris, A. (2007). The status of coral reefs in the remote region of Andavadoaka, southwest Madagascar. Western Indian Ocean Journal of Marine Science, 6(2), 207–218.Google Scholar
  148. O’Connor, T. G., & Kiker, G. A. (2004). Collapse of the Mapungubwe Society: Vulnerability of pastoralism to increasing aridity. Climatic Change, 66(1/2), 49–66.Google Scholar
  149. Paavola, J. (2008). Livelihoods, vulnerability and adaptation to climate change in Morogoro, Tanzania. Environmental Science & Policy, 11(7), 642–654.Google Scholar
  150. Parker Pearson, M. (2010). Pastoralists, warriors and colonists: The archaeology of southern Madagascar. Oxford: British Archaeological Reports.Google Scholar
  151. Peeters, F. J. C., Acheson, R., Brummer, G.-J. A., De Ruijter, W. P. M., Schneider, R. R., Ganssen, G. M., Ufkes, E., & Kroon, D. (2004). Vigorous exchange between the Indian and Atlantic oceans at the end of the past five glacial periods. Nature, 430(7000), 661–665.Google Scholar
  152. Perez, V. R., Burney, D. A., Godfrey, L. R., & Nowak-Kemp, M. (2003). Butchered sloth lemurs. Evolutionary Anthropology, 12(6), 260.Google Scholar
  153. Perez, V. R., Godfrey, L. R., Nowak-Kemp, M., Burney, D. A., Ratsimbazafy, J., & Vasey, N. (2005). Evidence of early butchery of giant lemurs in Madagascar. Journal of Human Evolution, 49(6), 722–42.Google Scholar
  154. Peters, C. M. (2000). Pre-Columbian silviculture and indigenous management of neotropical forests. In D. L. Lentz (Ed.), Imperfect balance: Landscape transformations in the pre-Columbian Americas (pp. 203–224). New York: Columbia University Press.Google Scholar
  155. Pierron, D., Razafindrazaka, H., Pagani, L., Ricaut, F.-X., Antao, T., Capredon, M., Sambo, C., Radimilahy, C., Rakotoarisoa, K.-A., Blench, R. M., Letellier, T., & Kivisild, T. (2014). Genome-wide evidence of Austronesian-Bantu admixture and cultural reversion in a hunter-gatherer group of Madagascar. Proceedings of the National Academy of Sciences of the United States of America, 111(3), 936–941.Google Scholar
  156. Piotrowski, A. M., Banakar, V. K., Scrivner, A. E., Elderfield, H., Galy, A., & Dennis, A. (2009). Indian Ocean circulation and productivity during the last glacial cycle. Earth and Planetary Science Letters, 285(1–2), 179–189.Google Scholar
  157. Pollini, J. (2010). Environmental degradation narratives in Madagascar: From colonial hegemonies to humanist revisionism. Geoforum, 41(5), 711.Google Scholar
  158. Prasad, V., Farooqui, A., Sharma, A., Phartiyal, B., Chakraborty, S., Bhandari, S., Raj, R., & Singh, A. (2014). Mid-late Holocene monsoonal variations from mainland Gujarat, India: A multi-proxy study for evaluating climate culture relationship. Palaeogeography Palaeoclimatology Palaeoecology, 397, 38–51.Google Scholar
  159. Preston, G. W., & Parker, A. G. (2013). Understanding the evolution of the Holocene pluvial phase and its impact on Neolithic populations in South-East Arabia. Arabian Archaeology and Epigraphy, 24(1), 87–94.Google Scholar
  160. Radimilahy, C. (2010). Un art rupestre malgache ancien? In M. Garlinski & E. Hopkins (Eds.), A Madagascar: Photographies Jacques Faublée, 1938–1941 (pp. 28–29). Geneva: Musée d’Ethnographie de Genève.Google Scholar
  161. Rakotoarisoa, J.-A. (1998). Mille ans d’occupation humaine dans le sud-est de Madagascar. Paris: L’Harmattan.Google Scholar
  162. Rakotomanana, H., Jenkins, R. K. B., & Ratsimbazafy, J. (2013). Conservation challenges for Madagascar in the next decade. In P. H. Raven, N. S. Sodhi, & L. Gibson (Eds.), Conservation biology: Voices from the tropics (pp. 33–39). Oxford: Wiley.Google Scholar
  163. Rangan, H., Carney, J., & Denham, T. (2012). Environmental history of botanical exchanges in the Indian Ocean world. Environment and History, 18(3), 311–342.Google Scholar
  164. Raper, D., & Bush, M. (2009). A test of Sporormiella representation as a predictor of megaherbivore presence and abundance. Quaternary Research, 71(3), 490–496.Google Scholar
  165. Rasolondrainy, T. V. R. (2011). Archaeological Study Of The Prehistoric Rock Paintings Of Ampasimaiky Rock Shelter, In The Upper Onilahy. MA thesis, Univerisity of Dar Es Salaam.Google Scholar
  166. Reyes, N. E. (1993). The modern diatom spectra of Madagascar and diatom-inferred late quaternary climatic changes in northeastern and central Madagascar. PhD dissertation, Fordham University.Google Scholar
  167. Rick, T. C., Kirch, P. V., Erlandson, J. M., & Fitzpatrick, S. M. (2013). Archeology, deep history, and the human transformation of island ecosystems. Anthropocene, 4, 33–45.Google Scholar
  168. Rijsdijk, K. F., Zinke, J., de Louw, P. G. B., Hume, J. P., van der Plicht, H., Hooghiemstra, H., Meijer, H. J. M., Vonhof, H. B., Porch, N., Vincent Florens, F. B., Baider, C., van Geel, B., Brinkkemper, J., Vernimmen, T., & Janoo, A. (2011). Mid-Holocene (4200 kyr BP) mass mortalities in Mauritius (Mascarenes): Insular vertebrates resilient to climatic extremes but vulnerable to human impact. The Holocene, 21(8), 1179–1194.Google Scholar
  169. Rodriguez Ramos, R. (2010). Rethinking Puerto Rican precolonial history. Tuscaloosa: University of Alabama Press.Google Scholar
  170. Rosen, A. M. (2007). Civilizing climate: Social response to climate change in the ancient Near East. Lanham: AltaMira Press.Google Scholar
  171. Saleem Khan, A., Ramachandran, A., Usha, N., Punitha, S., & Selvam, V. (2012). Predicted impact of the sea-level rise at Vellar–Coleroon estuarine region of Tamil Nadu coast in India: Mainstreaming adaptation as a coastal zone management option. Ocean & Coastal Management, 69, 327–339.Google Scholar
  172. Sales, R. F. M. (2009). Vulnerability and adaptation of coastal communities to climate variability and sea-level rise: Their implications for integrated coastal management in Cavite City, Philippines. Ocean & Coastal Management, 52(7), 395–404.Google Scholar
  173. Sandweiss, D. H., & Kelley, A. R. (2012). Archaeological contributions to climate change research: The archaeological record as a paleoclimatic and paleoenvironmental archive. Annual Review of Anthropology, 41(1), 371–391.Google Scholar
  174. Schild, R., & Wendorf, F. (2001). Geoarchaeology of the Holocene climatic optimum at Nabta Playa, Southwestern Desert, Egypt. Geoarchaeology, 16(1), 7–28.Google Scholar
  175. Schilling, J., Freier, K. P., Hertig, E., & Scheffran, J. (2012). Climate change, vulnerability and adaptation in North Africa with focus on Morocco. Agriculture, Ecosystems & Environment, 156, 12–26.Google Scholar
  176. Seddon, N., Tobias, J., Yount, J. W., Ramanampamonjy, J. R., Butchart, S., & Randrianizahana, H. (2008). Conservation issues and priorities in the Mikea Forest of Southwest Madagascar. Oryx, 34(4), 287–304.Google Scholar
  177. Serva, M., Petroni, F., Volchenkov, D., & Wichmann, S. (2012). Malagasy dialects and the peopling of Madagascar. Journal of the Royal Society, 9(66), 54–67.Google Scholar
  178. Simberloff, D. S., & Wilson, E. O. (1969). Experimental zoogeography of islands: The colonization of empty islands. Ecology, 50(2), 278–296.Google Scholar
  179. Stager, J. C., Ryves, D. B., King, C., Madson, J., Hazzard, M., Neumann, F. H., & Maud, R. (2013). Late Holocene precipitation variability in the summer rainfall region of South Africa. Quaternary Science Reviews, 67, 105–120.Google Scholar
  180. Steadman, D. W. (2006). Extinction and biogeography of tropical Pacific birds. Chicago: University of Chicago Press.Google Scholar
  181. Sundqvist, H. S., Holmgren, K., Fohlmeister, J., Zhang, Q., Matthews, M. B., Spötl, C., & Körnich, H. (2013). Evidence of a large cooling between 1690 and 1740 AD in southern Africa. Scientific Reports, 3(1767).Google Scholar
  182. Tadross, M. (2008). Climate change in Madagascar; Recent past and future (p. 18). Washington: World Bank.Google Scholar
  183. Tainter, J. A. (2006). Archaeology of overshoot and collapse. Annual Review of Anthropology, 35(1), 59–74.Google Scholar
  184. Talbot, M. R., Filippi, M. L., Jensen, N. B., & Tiercelin, J.-J. (2007). An abrupt change in the African monsoon at the end of the Younger Dryas. Geochemistry, Geophysics, Geosystems, 8(3), 1–16.Google Scholar
  185. Tierney, J. E., Russell, J. M., Huang, Y., Damsté, J. S. S., Hopmans, E. C., & Cohen, A. S. (2008). Northern hemisphere controls on tropical southeast African climate during the past 60,000 years. Science (New York, N.Y.), 322(5899), 252–255.Google Scholar
  186. Tierney, J. E., Russell, J. M., & Huang, Y. (2010). A molecular perspective on late quaternary climate and vegetation change in the Lake Tanganyika basin, East Africa. Quaternary Science Reviews, 29(5–6), 787–800.Google Scholar
  187. Tierney, J. E., Lewis, S. C., Cook, B. I., LeGrande, A. N., & Schmidt, G. A. (2011). Model, proxy and isotopic perspectives on the East African humid period. Earth and Planetary Science Letters, 307(1–2), 103–112.Google Scholar
  188. Tollenaere, C., Brouat, C., Duplantier, J.-M., Rahalison, L., Rahelinirina, S., Pascal, M., Moné, H., Mouahid, G., Leirs, H., & Cosson, J.-F. (2010). Phylogeography of the introduced species Rattus rattus in the western Indian Ocean, with special emphasis on the colonization history of Madagascar. Journal of Biogeography, 37(3), 398–410.Google Scholar
  189. Vallet-Coulomb, C., Gasse, F., Robison, L., Ferry, L., Van Campo, E., & Chalié, F. (2006). Hydrological modeling of tropical closed Lake Ihotry (SW Madagascar): Sensitivity analysis and implications for paleohydrological reconstructions over the past 4000 years. Journal of Hydrology, 331(1–2), 257–271.Google Scholar
  190. Van Campo, E., Gasse, F., Pailhes, E., Pomel, S., Chalié, F., Robison, L., Ferry, L., & Vallet-Coulomb, C. (2007). Changements environnementaux à Madagascar à l’Holocène récent. In Les réchauffements climatiques, 20ème symposium de l’APLF, Association des Palynologues de Langue française, Toulouse, France.Google Scholar
  191. Van Rampelbergh, M., Fleitmann, D., Verheyden, S., Cheng, H., Edwards, L., De Geest, P., De Vleeschouwer, D., Burns, S. J., Matter, A., Claeys, P., & Keppens, E. (2013). Mid- to Late Holocene Indian Ocean monsoon variability recorded in four speleothems from Socotra Island, Yemen. Quaternary Science Reviews, 65, 129–142.Google Scholar
  192. Vences, M., Wollenberg, K. C., Vieites, D. R., & Lees, D. C. (2009). Madagascar as a model region of species diversification. Trends in Ecology & Evolution, 24(8), 456–65.Google Scholar
  193. Vérin, P. (1986). The history of civilisation in North Madagascar. Rotterdam: Balkema.Google Scholar
  194. Vérin, P., & Wright, H. (1999). Madagascar and Indonesia: New evidence from archaeology and linguistics. Indo-Pacific Prehistory Association Bulletin, 18(2), 35–42.Google Scholar
  195. Virah-Sawmy, M., Willis, K. J., & Gillson, L. (2009). Threshold response of Madagascar’s littoral forest to sea-level rise. Global Ecology and Biogeography, 18(1), 98–110.Google Scholar
  196. Virah-Sawmy, M., Willis, K. J., & Gillson, L. (2010). Evidence for drought and forest declines during the recent megafaunal extinctions in Madagascar. Journal of Biogeography, 37(3), 506–519.Google Scholar
  197. Von Heland, J., & Folke, C. (2014). A social contract with the ancestors—Culture and ecosystem services in southern Madagascar. Global Environmental Change, 24, 251–264.Google Scholar
  198. Wang, L., & Brook, G. A. (2013). Holocene climate changes in Northwest Madagascar: Evidence from a two-meter-long stalagmite from Anjohibe Cave. In Paleorecords of our changing earth i: Climate history and human-environment interaction in the old and new world tropics.Google Scholar
  199. Wells, N. (2003). Some hypotheses on the Mesozoic and Cenozoic paleoenvironmental history of Madagascar. In S. M. Goodman & J. P. Benstead (Eds.), The natural history of Madagascar (pp. 16–34). Chicago: The University of Chicago Press.Google Scholar
  200. Williams, A. N., Ulm, S., Goodwin, I. D., & Smith, M. (2010). Hunter-gatherer response to Late Holocene climatic variability in northern and central Australia. Journal of Quaternary Science, 25(6), 831–838.Google Scholar
  201. Willis, K. J., Gillson, L., & Virah-Sawmy, M. (2008). Nature or nurture: The ambiguity of C4 grasslands in Madagascar. Journal of Biogeography, 35(10), 1741–1742.Google Scholar
  202. Winsborough, B. M., Shimada, I., Newsom, L. A., Jones, J. G., & Segura, R. A. (2012). Paleoenvironmental catastrophies on the Peruvian coast revealed in lagoon sediment cores from Pachacamac. Journal of Archaeological Science, 39(3), 602–614.Google Scholar
  203. Wood, J. R., Wilmshurst, J. M., Worthy, T. H., & Cooper, A. (2011). Sporormiella as a proxy for non-mammalian herbivores in island ecosystems. Quaternary Science Reviews, 30(7–8), 915–920.Google Scholar
  204. Woodroffe, C. D., & Murray-Wallace, C. V. (2012). Sea-level rise and coastal change: The past as a guide to the future. Quaternary Science Reviews, 54, 4–11.Google Scholar
  205. Yoder, A. D., & Nowak, M. D. (2006). Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell. Annual Review of Ecology, Evolution, and Systematics, 37(1), 405–431.Google Scholar
  206. Zinke, J., Reijmer, J. J., Thomassin, B., Dullo, W.-C., Grootes, P., & Erlenkeuser, H. (2003). Postglacial flooding history of Mayotte Lagoon (Comoro Archipelago, southwest Indian Ocean). Marine Geology, 194(3–4), 181–196.Google Scholar
  207. Zinke, J., Dullo, W.-C.-C., Heiss, G. A., & Eisenhauer, A. (2004). ENSO and Indian Ocean subtropical dipole variability is recorded in a coral record off Southwest Madagascar for the period 1659 to 1995. Earth and Planetary Science Letters, 228(1–2), 177–194.Google Scholar
  208. Zinke, J., Pfeiffer, M., Timm, O., Dullo, W.-C., & Brummer, G. J. A. (2009). Western Indian Ocean marine and terrestrial records of climate variability: A review and new concepts on land–ocean interactions since AD 1660. International Journal of Earth Sciences, 98(1), 115–133.Google Scholar
  209. Zinke, J., Loveday, B. R., Reason, C., Dullo, W.-C., & Kroon, D. (2014a). Madagascar corals track sea surface temperature variability in the Agulhas Current core region over the past 334 years. Scientific Reports, 4, 4393.Google Scholar
  210. Zinke, J., Pfeiffer, M., Park, W., & Schneider, B. (2014b). Seychelles coral record of changes in sea surface temperature bimodality in the western Indian Ocean from the Mid-Holocene to the present. Climate Dynamics, 43(3–4), 689–708.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of AnthropologyYale UniversityNew HavenUSA
  2. 2.Department of Environment and AgricultureCurtin UniversityBentleyAustralia

Personalised recommendations