African Archaeological Review

, Volume 30, Issue 1, pp 51–72 | Cite as

Genetics and African Cattle Domestication

Review Article

Abstract

Whether cattle domestication occurred independently on the African continent is among the most controversial questions in the Holocene archaeology of northern Africa. One long-established scenario, based upon early archaeological evidence, suggested that Africa’s earliest cattle derived from several introductions from Southwest Asia through the Nile Valley, or via the Horn of Africa. Based upon archaeofaunal remains retrieved in the late twentieth century, other archaeologists argued that an independent domestication of the African aurochs gave rise to Africa’s earliest domestic cattle. Up to now, the genetic data have also been controversial. This paper reviews the archaeological evidence and the scope of debate, and then focuses on the recent contributions of genetic research to clarifying these issues.

Keywords

Africa Cattle Bos taurus Domestication Genetics mtDNA Y-chromosome Archaeology Sahara 

Résumé

S’il y’eût eté une domestication independent des bovins dans le continent Africain perdure comme un question conflictuel dans l’archéologie Holocène d’Afrique. Une hypothèse bien établie dans la literature, et bien fondé sur l’évidence archéologique recouvré dans la premier parte du vingtième siècle, est que les bovins plus anciens dans l’Afrique etaient derivés de plusiers introductions du sud-oest d’Asie au Vallé du Nil o à la Corne de l'Afrique. Autres archéologues, utilisant des témoignages d’archéofaunes retrouvés pendant la dernière parte du vingtième siècle, prétendaient qu’une domestication independente des aurochs autochtones à l’Afrique etait la source du grand betaîl originel du continent. Néanmois l’évidence génétique était sujet a débattre entre les specialists. Cet article commence en résumer les débats et les evidences archéologiques, et après axe sur les contributions récentes des études du génome bovin à élucider l’histoire du grand betaîl dans l’Afrique.

Notes

Acknowledgments

The authors wish to thank Daniel Bradley, Fiona Marshall, and two anonymous reviewers for their valuable comments on earlier versions of this paper. While taking full responsibility for the opinions expressed therein, we believe their feedback vastly improved this final product. We thank Adria LaViolette for her sage advice, efficient handling of emergent issues, and great patience.

References

  1. Achilli, A., Bonfiglio, S., Olivieri, A., Malusa, A., Pala, M., Kashani, B. H., et al. (2009). The multifaceted origin of taurine cattle reflected by the mitochondrial genome. PLoS One, 4(6), e5753.CrossRefGoogle Scholar
  2. Achilli, A., Olivieri, A., Pellecchia, M., Uboldi, C., Colli, L., Al-Zahery, N., et al. (2008). Mitochondrial genomes of extinct aurochs survive in domestic cattle. Current Biology, 18, 157–158.CrossRefGoogle Scholar
  3. Anderung, C., Bouwman, A., Persson, P., Carretero, J. M., Ortega, A. I., Elburg, R., et al. (2005). Prehistoric contacts over the Straits of Gibraltar indicated by genetic analysis of Iberian Bronze Age cattle. Proceedings of the National Academy of Science, 102(24), 8431–8435.CrossRefGoogle Scholar
  4. Applegate, A., Gautier, A., & Duncan, S. (2001). The north tumuli of the Nabta Late Neolithic ceremonial complex. In F. Wendorf, R. Schild, & Associates (Eds.), Settlement of the Egyptian Sahara. Volume 1: The archaeology of Nabta Playa (pp. 468–488). New York: Kluwer.Google Scholar
  5. Baig, M., Beja-Pereira, A., Mohammad, R., Kulkarni, K., Farah, S., & Luikart, G. (2005). Phylogeography and origin of Indian domestic cattle. Current Science, 89, 38–40.Google Scholar
  6. Bailey, J. F., Richards, M. B., Macaulay, V. A., Colson, I. B., James, I. T., Bradley, D. G., et al. (1996). Ancient DNA suggests a recent expansion of European cattle from a diverse wild progenitor species. Proceedings of the Royal Society of Biological Science, 263, 1467–1473.CrossRefGoogle Scholar
  7. Barakat, H. N. (2001). Part I: Anthracological studies in the Neolithic sites of Nabta Playa, south Egypt. In F. Wendorf, R. Schild, & Associates (Eds.), Holocene settlement of the Egyptian Sahara (Vol. 1, pp. 592–600). New York: Kluwer Academic/Plenum.Google Scholar
  8. Barich, B. E. (1974). La serie stratigraphica dell'Ti-n-Torha (Acacus, Libya). Origini Preistoria e Protoistoria della Civiltà Antiche Roma, 8, 7–184.Google Scholar
  9. Barich, B. E. (1997). Saharan Neolithic. In J. O. Vogel (Ed.), Encyclopedia of precolonial Africa: Archaeology, history, languages, cultures, and environments (pp. 386–394). Walnut Creek, CA: AltaMira press.Google Scholar
  10. Beja-Pereira, A., Caramelli, C., Lalueza-Fox, C., Vernesi, N., Ferrand, A., Casoli, F., et al. (2006). The origin of European cattle: Evidence from modern and ancient DNA. Proceedings of the National Academy of Science, 103(21), 8113–8118.CrossRefGoogle Scholar
  11. Blench, R. M. (1993). Recent developments in African language classification and their implications for prehistory. In T. Shaw, P. Sinclair, B. Andah, & A. Okpoko (Eds.), The archaeology of Africa: Foods, metals, and towns (pp. 126–138). London: Routledge.Google Scholar
  12. Blench, R. M. (2000). A survey of ethnographic and linguistic evidence for the history of livestock in Africa. In R. M. Blench & K. C. MacDonald (Eds.), The origins and development of African livestock. Archaeology, genetics, linguistics, and ethnography (pp. 19–27). London: UCL Press.Google Scholar
  13. Bochenski, Z., & Tomek, T. (2001). Holocene bird remains from Nabta. In F. Wendorf, R. Schild, & Associates (Eds.), Holocene settlement of the Egyptian Sahara (Vol. 1, pp. 636–647). New York: Kluwer Academic/Plenum.Google Scholar
  14. Boulos, L., Barakat, H. N., Hather, J., & Wasylikowa, K. (2001). Paleoecology of Site E-75-6 based on subfossil plant remains. In F. Wendorf, R. Schild, & Associates (Eds.), Holocene settlement of the Egyptian Sahara (Vol. 1, pp. 585872–585600). New York: Kluwer Academic/Plenum.Google Scholar
  15. Bradley, D. G., MacHugh, D. E., Cunningham, P., & Loftus, R. T. (1996). Mitochondrial diversity and the origins of African and European cattle. Proceedings of the National Academy of Sciences, USA, 93(10), 5131–5135.CrossRefGoogle Scholar
  16. Chenal-Vélardé, I. (1997). Les premières traces de bouef domestique en Afrique du Nord: Etat de la recherche centré sur les données archéozoologiques. ArchaeoZoologia, IX, 11–40.Google Scholar
  17. Churcher, C. S. (1972). Late Pleistocene vertebrates from archaeological sites in the Plain of Kom Ombo, Upper Egypt. Life Sciences Contribution, Royal Ontario Museum, 82Google Scholar
  18. Close, A. E. (2001). Sites E-91-3 and E-91-4: The early Neolithic of El Adam Type of Nabta Playa. In F. Wendorf, R. Schild, & Associates (Eds.), Holocene settlement of the Egyptian Sahara (Vol. 1, pp. 71–110). New York: Kluwer Academic/Plenum.Google Scholar
  19. Copley, M. S., Berstan, R., Dudd, S. N., Docherty, G., Mukherjee, A. J., Straker, V., et al. (2003). Direct chemical evidence for widespread dairying in prehistoric Britain. Proceedings of the National Academy of Science, 100, 1524–1529.CrossRefGoogle Scholar
  20. Cymbron, T., Loftus, R. T., Malheiro, M. I., & Bradley, D. G. (1999). Mitochondrial sequence variation suggests an African influence in Portuguese cattle. Proceedings of the Royal Society of Biological Science, 266, 597–603.CrossRefGoogle Scholar
  21. Dahl, G., & Hjort, A. (1976). Having herds. Pastoral herd growth and household economy. Stockholm Studies in Social Anthropology No. 2. Stockholm: Department of Anthropology, University of Stockholm.Google Scholar
  22. Decker, J. E., Pires, J. C., Conant, G. C., McKay, S. D., Heaton, M. P., Chen, K., et al. (2009). Resolving the evolution of extant and extinct ruminants with high-throughput phylogenomics. Proceedings of the National Academy of Science, 106(44), 18644–18649.CrossRefGoogle Scholar
  23. Dunne, J., Evershed, R. P., Salque, M., Cramp, L., Bruni, S., Ryan, K., et al. (2012). First dairying in green Saharan Africa in the fifth millennium BC. Nature, 486, 390–394.CrossRefGoogle Scholar
  24. Edwards, C. J., MacHugh, D. E., Dobney, K. M., Martin, L., Russell, N., Horwitz, L. K., et al. (2004). Ancient DNA analysis of 101 cattle remains: Limits and prospects. Journal of Archaeological Science, 31(6), 695–710.CrossRefGoogle Scholar
  25. Edwards, C. J., Bollongino, R., Scheu, A., Chamberlain, A., Tresset, A., Vigne, J.-D., et al. (2007). Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs. Proceedings of the Royal Society Biological Sciences, 274, 1377–1385.Google Scholar
  26. Ehret, C. (1967). Cattle-keeping and milking in Eastern and Southern African history: The linguistic evidence. Journal of African History, 8, 1–17.CrossRefGoogle Scholar
  27. Ehret, C. (1993). Nilo-Saharans and the Saharo-Sudanese Neolithic. In T. Shaw, P. Sinclair, B. Andah, & A. Okpoko (Eds.), The archaeology of Africa: Foods, metals, and towns (pp. 104–116). London: Routledge.Google Scholar
  28. Ehret, C. (1997). African languages: A historical survey. In J. O. Vogel (Ed.), Encyclopedia of precolonial Africa: Archaeology, history, languages, cultures, and environments (pp. 159–166). Walnut Creek, CA: AltaMira Press.Google Scholar
  29. Ehret, C. (2012). Linguistic archaeology. African Archaeological Review, 29(2/3), 109–130.CrossRefGoogle Scholar
  30. Epstein, H. (1971). The origins of domestic animals in Africa. New York: Africana.Google Scholar
  31. Evershed, R. P., Payne, S., Sherratt, A. G., Copley, M. S., Coolidge, J., Urem-Kotsu, D., et al. (2008). Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature, 455, 528–531.CrossRefGoogle Scholar
  32. FAO. (2002). Appendix 3. Livestock population in sub-Saharan Africa, 1999. In M. J. Otte & P. Chilonda (Eds.), Cattle and small ruminant systems in sub-Saharan Africa: A systematic review (p. 83). Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  33. Finlay, E. K., Gaillard, C., Vahidi, S. M., Mirhoseini, S. Z., Jianlin, H., Qi, X. B., et al. (2007). Bayesian inference of population expansions in domestic bovines. Biology Letters, 3, 449–452.CrossRefGoogle Scholar
  34. Garcea, E. A. A. (1993). Cultural dynamics in the Saharo-Sudanese prehistory. Roma: Gruppo Editoriale Internazionale.Google Scholar
  35. Garcea, E. A. A., & Hildebrand, E. A. (2009). Shifting social networks along the Nile: Middle Holocene ceramic assemblages from Sai Island, Sudan. Journal of Anthropological Archaeology, 28, 304–322.CrossRefGoogle Scholar
  36. Gatto, M. C. (2001). Early Neolithic pottery of the Nabta-Kiseiba area: Stylistic attributes and regonal relationships. In K. Nelson & Associates (Eds.), Holocene settlement of the Egyptian Sahara: The pottery of Nabta Playa (Vol. 2, pp. 65–78). New York: Kluwer Adademic/Plenum Publishers.Google Scholar
  37. Gautier, A. (1968). Mammalian remains of the northern Sudan and southern Egypt. In F. Wendorf (Ed.), The Prehistory of Nubia (Vol. 1, pp. 80–99). Dallas: Fort Burgwin Research Center, Southern Methodist University.Google Scholar
  38. Gautier, A. (1984). Archaeozoology of the Bir Kiseiba region, Eastern Sahara. In F. Wendorf, R. Schild, & A. E. Close (Eds.), Cattle-keepers of the Eastern Sahara (pp. 49–72). Dallas: Southern Methodist University.Google Scholar
  39. Gautier, A. (2001). The early to late Neolithic archeofaunas from Nabta and Bir Kiseiba. In F. Wendorf, R. Schild, & Associates (Eds.), Holocene Settlement of the Egyptian Sahara (Vol. 1, pp. 609–635). New York: Kluwer Academic/Plenum.Google Scholar
  40. Gautier, A., & Van Neer, W. (1977). Prehistoric fauna from Ti-n-Torha (Tadrart Acacus, Libya). Origini Preistoria e Protoistoria della Civiltà Antiche Roma, XI, 87–127.Google Scholar
  41. Ginja, C., Telo da Gama, L., & Penedo, M. C. (2009). Y chromosome haplotype analysis in Portuguese cattle breeds using SNPs and STRs. Journal of Heredity, 100(2), 148–157.CrossRefGoogle Scholar
  42. Götherström, A., Anderung, C., Hellborg, L., Elburg, R., Smith, C., Bradley, D. G., et al. (2005). Cattle domestication in the Near East was followed by hybridization with aurochs bulls in Europe. Proceedings of the Royal Society B, 272, 2345–2350.CrossRefGoogle Scholar
  43. Grigson, C. (1991). African origin for African cattle? Some archaeological evidence. African Archaeological Review, 9, 119–144.CrossRefGoogle Scholar
  44. Grigson, C. (2000). Bos africanus (Brehm)? Notes on the archaeozoology of the native cattle of Africa. In R. M. Blench & K. C. MacDonald (Eds.), The origins and development of African livestock. Archaeology, genetics, linguistics, and ethnography (pp. 38–60). London: UCL Press.Google Scholar
  45. Hanotte, O., Bradley, D. G., Ochieng, J. W., Verjee, Y., Hill, E. W., & Rege, J. E. O. (2002). African pastoralism: Genetic imprints of origins and migrations. Science, 296, 336–339.CrossRefGoogle Scholar
  46. Hanotte, O., Tawah, C. L., Bradley, D. G., Okomo, M., Verjee, Y., Ochieng, J., et al. (2000). Geographic distribution and frequency of a taurine Bos taurus and an indicine Bos indicus gamma specific allele amongst sub-Saharan African cattle breeds. Molecular Ecology, 9(4), 387–396.CrossRefGoogle Scholar
  47. Hellborg, L., & Ellegren, H. (2004). Low levels of nucleotide diversity in mammalian Y chromosomes. Molecular Biology and Evolution, 21(1), 158–163.CrossRefGoogle Scholar
  48. Helmer, D., Gourichon, L., Monchot, H., Peters, J. & Saña Segui, M. (2005). Identifying early domestic cattle from Pre-Pottery Neolithic sites on the Middle Euphrates using sexual dimorphism. In J. D. Vigne, J. Peters & D. Helmer (Eds.), The first steps of animal domestication: New archaeozoological approaches (pp. 86-95), U. Albarella, K. Dobney & P. Rowley-Conwy, General Editors. Oxford: Oxbow Books.Google Scholar
  49. Hiendleder, S., Lewalski, H., & Janke, A. (2008). Complete mitochondrial genomes of Bos taurus and Bos indicus provide new insights into intra-species variation, taxonomy and domestication. Cytogenetic and Genome Research, 120, 150–156.CrossRefGoogle Scholar
  50. Ho, S. Y., Larson, G., Edwards, C. J., Heupink, T. H., Lakin, K. E., Holland, P. W. H., et al. (2008). Correlating Bayesian date estimates with climatic events and domestication using a bovine case study. Biology Letters, 4, 370–374.CrossRefGoogle Scholar
  51. Ho, S. Y., Phillips, M. J., Cooper, A., & Drummond, A. J. (2005). Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Molecular Biology and Evolution, 7, 1561–1568.CrossRefGoogle Scholar
  52. Honegger, M. (2005). Kerma et les débuts du Néolithique africain. Genava n.s, 53, 239–249.Google Scholar
  53. Honegger, M. (2007). Aux origins de Kerma. Genava n.s., 55, 200–212.Google Scholar
  54. Honegger, M., & Bastien, J. (2009). The early Holocene sequence of Wadi el-Arab. Kerma, 2009, 3–6.Google Scholar
  55. Ingram, C. J. E., Mulcare, C. A., Itan, Y., Thomas, M. G. T., & Swallow, D. M. (2009). Lactose digestion and the evolutionary genetics of lactase persistence. Human Genetics, 124, 579–591.CrossRefGoogle Scholar
  56. Jesse, F. (2001). Wavy line ceramics: Evidence from northeastern Africa. In K. Nelson (Ed.), Holocene settlement of the Egyptian Sahara: The pottery of Nabta Playa (pp. 79–96). New York: Springer.Google Scholar
  57. King, J. M. (1983). Livestock water needs in pastoral Africa in relation to climate and forage. ILCA Research Report 7.Google Scholar
  58. Kumar, P., Freeman, A. R., Loftus, R. T., Gaillard, C., Fuller, D. Q., & Bradley, D. G. (2003). Admixture analysis of South Asian cattle. Heredity, 91, 43–50.CrossRefGoogle Scholar
  59. Lei, C. Z., Chen, H., Zhang, H. C., Cai, X., Liu, R. Y., Luo, L. Y., et al. (2006). Origin and phylogeographical structure of Chinese cattle. Animal Genetics, 37, 579–582.CrossRefGoogle Scholar
  60. Linseele, V. (2004). Size change of the African aurochs during the Pleistocene and Holocene. Journal of African Archaeology, 2(2), 165–185.CrossRefGoogle Scholar
  61. Linseele, V. (2010). Did specialized pastoralism develop differently in Africa than in the Near East? An example from the West African Sahel. Journal of World Prehistory, 23, 43–77.CrossRefGoogle Scholar
  62. Loftus, R. T., Ertugrul, O., Harba, A. H., El-Barody, M. A., MacHugh, D. E., Park, S. D. E., et al. (1999). A microsatellite survey of cattle from a centre of origin: The Near East. Molecular Ecology, 8(12), 2015–2022.CrossRefGoogle Scholar
  63. Loftus, R. T., MacHugh, D. E., Bradley, D. G., Sharp, P. M., & Cunningham, R. P. (1994a). Evidence for two independent domestications of cattle. Proceedings of the National Academy of Sciences of the United States of America, 91(7), 2757–2761.CrossRefGoogle Scholar
  64. Loftus, R. T., MacHugh, D. E., Ngere, L. O., Balian, D. S., Badi, A. M., Bradley, D. G., et al. (1994b). Mitochondrial genetic variation in European, African and Indian cattle populations. Animal Genetics, 25, 265–271.CrossRefGoogle Scholar
  65. MacHugh, D. E., & Bradley, D. G. (2001). Livestock genetic origins: Goats buck the trend. Proceedings of the National Academy of Science, 98, 5382–5384.CrossRefGoogle Scholar
  66. MacHugh, D. E., Shriver, M. D., Loftus, R. T., Cunningham, P., & Bradley, D. G. (1997). Microsatellite DNA variation and the evolution, domestication, and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus). Genetics, 146, 1071–1086.Google Scholar
  67. Magee, D. A., Mannen, H., & Bradley, D. G. (2007). Duality in Bos indicus mtDNA diversity: Support for geographical complexity in zebu domestication. In M. D. Petraglia & B. A. Allchin (Eds.), Inter-disciplinary Studies in Archaeology, Biological Anthropology, Linguistics and Genetics (pp. 385–391). New York: Springer.Google Scholar
  68. Magee, D. A., Meghen, C., Harrison, S., Troy, C. S., Cymbron, T., Gaillard, C., et al. (2002). A partial African ancestry for the Creole cattle populations of the Caribbean. Journal of Heredity, 93, 429–432.CrossRefGoogle Scholar
  69. Magid, A. A. (1995). Plant remains from the sites of Aneibis, Abu Darbein and El Damer and their implications. In R. Håland & A. A. Magid (Eds.), Aqualithic sites along the Rivers Nile and Atbara (pp. 147–177). Bergen: Alma Mater.Google Scholar
  70. Mannen, H., Kohno, M., Nagata, Y., Tsuji, S., Bradley, D. G., Yeo, J. S., et al. (2004). Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle. Molecular Phylogenetics and Evolution, 32, 539–544.CrossRefGoogle Scholar
  71. Mannen, H., Tsuji, S., Loftus, R. T., & Bradley, D. G. (1998). Mitochondrial DNA variation and evolution of Japanese black cattle (Bos taurus). Genetics, 150, 1169–1175.Google Scholar
  72. Marshall, F. B. (1989). Rethinking the role of Bos indicus in Africa. Current Anthropology, 30, 235–240.CrossRefGoogle Scholar
  73. Marshall, F. B., & Hildebrand, E. (2002). Cattle before crops: The beginnings of food production in Africa. Journal of World Prehistory, 16(2), 99–143.CrossRefGoogle Scholar
  74. McDonald, M. M. A. (1991). Origins of the Neolithic in the Nile Valley as seen from the Dakhleh Oasis in the Egyptian Western Desert. Sahara, 4, 41–52.Google Scholar
  75. McIntosh, S. K., & Scheinfeldt, L. B. (2012). It’s getting better all the time: Comparative perspectives from Oceania and West Africa on genetic analysis and archaeology. African Archaeological Review, 29(2/3), 131–170.CrossRefGoogle Scholar
  76. Mukherjee, A. J., Copley, M. S., Berstan, R., Clark, K. A., & Evershed, R. P. (2005). Interpretation of δ13C values of fatty acids in relation to animal husbandry, food processing and consumption in prehistory. In J. Mulville & A. Outram (Eds.), The zooarchaeology of milk and fats (pp. 77–93). Oxford: Oxbow.Google Scholar
  77. Murray, C., Huerta-Sanchez, E., Casey, F., & Bradley, D. G. (2010). Cattle demographic history modelled from autosomal sequence variation. Philosophical Transactions of the Royal Society of London. B. Biolological Sciences, 27, 365(1552), 2531–2539.Google Scholar
  78. Nurse, D. (1982). Bantu expansion into East Africa: Linguistic evidence. In C. Ehret & M. Posnansky (Eds.), The archaeological and linguistic reconstruction of African history (pp. 199–222). Berkeley: University of California Press.Google Scholar
  79. Nurse, D. (1997). The contribution of linguistics to the study of history in Africa. Journal of African History, 38, 359–391.CrossRefGoogle Scholar
  80. Paris, F. (1997). Les inhumations de Bos au Sahara méridional au Néolithique. Archaeozoologia, IX, 113–122.Google Scholar
  81. Pérez-Pardal, L., Royo, L. J., Alvarez, I., de León, F. A., Fernández, I., Casais, R., et al. (2009). Female segregation patterns of the putative Y-chromosome-specific microsatellite markers INRA124 and INRA126 do not support their use for cattle population studies. Animal Genetics, 40(4), 560–564.CrossRefGoogle Scholar
  82. Pérez-Pardal, L., Royo, L. J., Beja-Pereira, A., Curik, I., Traoré, A., Fernández, I., et al. (2010). Y-specific microsatellites reveal an African subfamily in taurine (Bos taurus) cattle. Animal Genetics, 41(3), 232–241.CrossRefGoogle Scholar
  83. Peters, J. (1986). Osteomorphology and osteometry of the appendicular skeleton of African buffalo, Syncerus caffer (Spaarman, 1779) and cattle, Bos primigenius f. taurus (Bojanus, 1827). Occasional Papers, Laboratorium voor Paleontologie, Rijksuniversiteit GentGoogle Scholar
  84. Rege, J. E. O., & Bester, J. (1998). Livestock resources and sustainable development in Africa. Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, 26, 19–26.Google Scholar
  85. Renfrew, C., McMahon, A., & Trask, L. (Eds.). (2000). Time depth in historical linguistics. Cambridge: McDonald Institute for Archaeological Research.Google Scholar
  86. Ritchie, J. C., & Haynes, C. V. (1987). Holocene vegetation zonation in the eastern Sahara. Nature, 330, 645–647.CrossRefGoogle Scholar
  87. Shahack-Gross, R., Marshall, F. B., & Weiner, S. (2002). Geo-ethnoarchaeology of pastoral sites: The identification of livestock enclosures in abandoned Maasai settlements. Journal of Archaeological Science, 29, 1–21.CrossRefGoogle Scholar
  88. Smith, A. B. (1992). Pastoralism in Africa: Origins and development ecology. Athens, OH: Ohio University Press.Google Scholar
  89. Smith, A. B. (2005). African herders: Emergence of pastoral traditions. Walnut Creek, CA: AltaMira Press.Google Scholar
  90. Stock, F., Edwards, C. J., Bollongino, R., Finlay, E. K., Burger, J., & Bradley, D. G. (2009). Cytochrome b sequences of ancient cattle and wild ox support phylogenetic complexity in the ancient and modern bovine populations. Animal Genetics, 40(5), 694–700.Google Scholar
  91. Stuiver, M. & Reimer, P. J. (2005). CALIB Radiocarbon Calibration Program.Google Scholar
  92. Suzuki, R., Kemp, S. J., & Teale, A. J. (1993). Polymerase chain reaction analysis of mitochondrial DNA polymorphism in N'Dama and Zebu cattle. Animal Genetics, 24(5), 339–343.CrossRefGoogle Scholar
  93. Teale, A. J., Wambugu, J., Gwakisa, P. S., Stranzinger, G., Bradley, D. G., & Kemp, S. J. (1995). A polymorphism in randomly amplified DNA that differentiates the Y chromosomes of Bos indicus and Bos taurus. Animal Genetics, 26(4), 243–248.CrossRefGoogle Scholar
  94. Tishkoff, S. A., Reed, F. A., Ranciaro, A., Voight, B. F., Babbitt, C. C., Silverman, J. S., et al. (2007). Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genetics, 39, 31–40.CrossRefGoogle Scholar
  95. Troy, C. S., MacHugh, D. E., Bailey, J. F., Magee, D. A., Loftus, R., Cunningham, P., et al. (2001). Genetic evidence for Near-Eastern origins of European cattle. Nature, 410, 1088–1091.CrossRefGoogle Scholar
  96. von den Driesch, A. (1997). Tierreste aus Buto im Nildelta. Archaeofauna, 6, 23–39.Google Scholar
  97. Wasylikowa, K. (2001). Site E-75-6: Vegetation and subsistence of the early Neolithic at Nabta Playa, Egypt, reconstructed from charred plant remains. In F. Wendorf, R. Schild, & Associates (Eds.), Holocene settlement of the Egyptian Sahara (Vol. 1, pp. 544–591). New York: Kluwer Academic/Plenum.Google Scholar
  98. Wendorf, F., & Schild, R. (1994). Are the early Holocene cattle in the eastern Sahara domestic or wild? Evolutionary Anthropology, 3(4), 118–128.CrossRefGoogle Scholar
  99. Wendorf, F., & Schild, R. (2001). Conclusions. In F. Wendorf, R. Schild, & Associates (Eds.), Holocene settlement of the Egyptian Sahara (Vol. 1, pp. 648–675). New York: Kluwer Academic/Plenum.Google Scholar
  100. Zeder, M. A. (2006). A critical assessment of markers of initial domestication in goats (Capra hircus). In M. A. Zeder, D. G. Bradley, E. Emshwiller, & B. D. Smith (Eds.), Documenting domestication: New genetic and archaeological paradigms (pp. 181–208). Berkeley: University of California Press.Google Scholar
  101. Zeder, M. A., & Hesse, B. (2000). The initial domestication of goats (Capra hircus) in the Zagros Mountains 10,000 years ago. Science, 287, 2254–2257.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Cepheid GmbHFrankfurt MainGermany
  2. 2.Department of AnthropologyUniversity of CaliforniaSanta CruzUSA

Personalised recommendations