Advertisement

Implied liquidity risk premia in option markets

  • Florence Guillaume
  • Gero Junike
  • Peter Leoni
  • Wim Schoutens
Research Article
  • 29 Downloads

Abstract

The theory of conic finance replaces the classical one-price model by a two-price model by determining bid and ask prices for future terminal cash flows in a consistent manner. In this framework, we derive closed-form solutions for bid and ask prices of plain vanilla European options, when the density of the log-returns is log-concave. Assuming that log-returns are normally or Laplace distributed, we apply the results to a time-series of real market data and compute an implied liquidity risk premium to describe the bid–ask spread. We compare this approach to the classical attempt of describing the spread by quoting Black–Scholes implied bid and ask volatilities and demonstrate that the new approach characterize liquidity over time significantly better.

Keywords

Conic finance Distortion functions WANG-transform Laplace distortion 

JEL Classification

C02 D53 G12 G13 

References

  1. Albrecher, H., Guillaume, F., Schoutens, W.: Implied liquidity: model sensitivity. J Empir Finance 23, 48–67 (2013)CrossRefGoogle Scholar
  2. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math Finance 9(3), 203–228 (1999)CrossRefGoogle Scholar
  3. Balbás, A., Garrido, J., Mayoral, S.: Properties of distortion risk measures. Methodol Comput Appl Probab 11, 385–399 (2009)CrossRefGoogle Scholar
  4. Bernardo, A.E., Ledoit, O.: Gain, loss, and asset pricing. J Polit Econ 108(1), 144–172 (2000)CrossRefGoogle Scholar
  5. Cherny, A., Madan, D.B.: New measures for performance evaluation. Rev Financ Stud 22(7), 2571–2606 (2009)CrossRefGoogle Scholar
  6. Corcuera, J.M., Guillaume, F., Madan, D.B., Schoutens, W.: Implied liquidity: towards stochastic liquidity modelling and liquidity trading. Int J Portfolio Anal Manag 1(1), 80–91 (2012)CrossRefGoogle Scholar
  7. Corcuera, J.M., Guillaume, F., Leoni, P., Schoutens, W.: Implied Lévy volatility. Quant Finance 9(4), 383–393 (2009)CrossRefGoogle Scholar
  8. Dhaene, J., Dony, J., Forys, M. B., Linders, D., Schoutens, W.: FIX: the fear index—measuring market fear. In: Topics in Numerical Methods for Finance, pp 37-55. Springer, Boston, MA (2012)CrossRefGoogle Scholar
  9. Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time. Walter de Gruyter, Berlin/New York (2011)CrossRefGoogle Scholar
  10. Kijima, M.: A multivariate extension of equilibrium pricing transforms: the multivariate Esscher and Wang transforms for pricing financial and insurance risks. ASTIN Bull J IAA 36(1), 269–283 (2006)CrossRefGoogle Scholar
  11. Kijima, M., Muromachi, Y.: On the Wang transform with fat-tail distributions. In: Proceedings of Stanford—Tsukuba Workshop (2006)Google Scholar
  12. Kijima, M., Muromachi, Y.: An extension of the Wang transform derived from Bühlmann’s economic premium principle for insurance risk. Insur Math Econ 42(3), 887–896 (2008)CrossRefGoogle Scholar
  13. Kusuoka, S.: On law invariant coherent risk measures. In: Advances in Mathematical Economics, pp. 83–95 (2001)CrossRefGoogle Scholar
  14. Madan, D.B.: A two price theory of financial equilibrium with risk management implications. Ann Finance 8(4), 489–505 (2012)CrossRefGoogle Scholar
  15. Madan, D.B.: Asset pricing theory for two price economies. Ann Finance 11(1), 1–35 (2015)CrossRefGoogle Scholar
  16. Madan, D.B.: Adapted hedging. Ann Finance 12(3–4), 305–334 (2016a)CrossRefGoogle Scholar
  17. Madan, D.B.: Conic portfolio theory. Int J Theor Appl Finance 19(03), 1650019 (2016b)CrossRefGoogle Scholar
  18. Madan, D.B., Cherny, A.: Markets as a counterparty: an introduction to conic finance. Int J Theor Appl Finance 13(08), 1149–1177 (2010)CrossRefGoogle Scholar
  19. Madan, D.B., Schoutens, W.: Conic coconuts: the pricing of contingent capital notes using conic finance. Math Financ Econ 4(2), 87–106 (2011)CrossRefGoogle Scholar
  20. Madan, D.B., Schoutens, W.: Applied Conic Finance. Cambridge University Press, Cambridge (2016)CrossRefGoogle Scholar
  21. Madan, D.B., Schoutens, W.: Conic asset pricing and the costs of price fluctuations. Ann Finance (2018).  https://doi.org/10.1007/s10436-018-0328-1
  22. Tsukahara, H.: One-parameter families of distortion risk measures. Math Finance 19(4), 691–705 (2009)CrossRefGoogle Scholar
  23. Wang, S.S.: A class of distortion operators for pricing financial and insurance risks. J Risk Insur 67, 15–36 (2000)CrossRefGoogle Scholar
  24. Wang, S.S.: A universal framework for pricing financial and insurance risks. Astin Bull J IAA 32(02), 213–234 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of AntwerpAntwerpBelgium
  2. 2.Department of Mathematics, Building C Science FacultyUniversitat Autònoma de BarcelonaBellaterraSpain
  3. 3.Department of MathematicsUniversity of LeuvenLeuvenBelgium

Personalised recommendations