Annals of Finance

, Volume 9, Issue 4, pp 725–755 | Cite as

Continuous equilibrium in affine and information-based capital asset pricing models

  • Ulrich Horst
  • Michael Kupper
  • Andrea Macrina
  • Christoph MainbergerEmail author
Research Article


We consider a class of generalized capital asset pricing models in continuous time with a finite number of agents and tradable securities. The securities may not be sufficient to span all sources of uncertainty. If the agents have exponential utility functions and the individual endowments are spanned by the securities, an equilibrium exists and the agents’ optimal trading strategies are constant. Affine processes, and the theory of information-based asset pricing are used to model the endogenous asset price dynamics and the terminal payoff. The derived semi-explicit pricing formulae are applied to numerically analyze the impact of the agents’ risk aversion on the implied volatility of simultaneously-traded European-style options.


Continuous-time equilibrium Exponential utility CAPM Affine processes Information-based asset pricing Implied volatility 

JEL Classification

C62 C52 D53 


  1. Bain, A., Crisan, D.: Fundamentals of Stochastic Filtering. Berlin: Springer (2009)Google Scholar
  2. Biagini, S., Fritelli, M.: A unified framework for utility maximization problems: an Orlicz space approach. Ann Probab 18(3), 929–966 (2008)CrossRefGoogle Scholar
  3. Brody, D.C., Hughston, L.P., Macrina, A.: Beyond Hazard Rates: a New Framework for Credit-Risk Modelling. In: Elliott, R., Fu, M., Jarrow, R., Yen, J.Y. (eds.) Advances in Mathematical Finance: Festschrift Volume in honour of Dilip Madan. Birkhäuser/Springer, Berlin (2007)Google Scholar
  4. Brody, D.C., Hughston, L.P., Macrina, A.: Information-based asset pricing. Int J Theor Appl Financ 11, 107–142 (2008)Google Scholar
  5. Carmona, R., Fehr, M., Hinz, J., Porchet, A.: Market design for emission trading schemes. SIAM Rev 52(3), 403–452 (2010)CrossRefGoogle Scholar
  6. Cheridito, P., Horst, U., Kupper, M., Pirvu, T.: Equilibrium Pricing in Incomplete Markets Under Translation Invariant Preferences. arXiv e-prints (2011)Google Scholar
  7. Delbaen, F., Grandits, P., Rheinländer, T., Samperi, D., Schweizer, M., Stricker, C.: Exponential hedging and entropic penalties. Math Financ 12(2), 99–123 (2002)CrossRefGoogle Scholar
  8. Delbaen, F., Schachermayer, W.: The Mathematics of Arbitrage. Berlin: Springer (2006)Google Scholar
  9. Dudley, R.M.: Real Analysis and Probability. Belmont: Wadsworth& Brooks/Cole (1989)Google Scholar
  10. Duffie, D., Filipovic, D., Schachermayer, W.: Affine processes and applications in finance. Ann Appl Probab 13(3), 984–1053 (2003)CrossRefGoogle Scholar
  11. Duffie, D., Huang, C.: Implementing Arrow-Debreu equilibria by continuous trading of few long-lived securities. Econometrica 53, 1337–1356 (1985)CrossRefGoogle Scholar
  12. Duffie, D., Singleton, K.: Credit Risk: Pricing, Measurement, and Management. Princeton: Princeton Univeristy Press (2003)Google Scholar
  13. Filipović, D.: Term Structure Models—A Graduate Course. Berlin: Springer (2009)Google Scholar
  14. Friz, P., Keller-Ressel, M.: Moment Explosions in Stochastic Volatility Models. In: Cont, R. (ed.) Encycl Quantit Financ IV, pp. 1247–1253. Wiley, Chichester (2010)Google Scholar
  15. Gârleanu, N., Pedersen, L.H., Poteshman, A.M.: Demand-based option pricing. Rev Financ Stud 22(10), 4259–4299 (2009)CrossRefGoogle Scholar
  16. He, H., Leland, H.: On equilibrium asset price processes. Rev Financ Stud 6(3), 593–617 (1993)CrossRefGoogle Scholar
  17. Heston, S.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev Financ Stud 6(2), 327–343 (1993)CrossRefGoogle Scholar
  18. Horst, U., dos Reis, G., Pirvu, T.: On securitization, market completion and equilibrium risk transfer. Math Financ Econ 2(4), 211–252 (2010)CrossRefGoogle Scholar
  19. Hoyle, E., Hughston, L.P., Macrina, A.: Lévy random bridges and the modelling of financial information. Stoch Process Appl 121(4), 856–884 (2011)Google Scholar
  20. Jofre, A., Rockafellar, R.T., Wets, R.J.B.: General economic equilibrium with incomplete markets and money. Preprint (2011)Google Scholar
  21. Karatzas, I., Lehoczky, J.P., Shreve, S.E.: Existence and uniqueness of multi-agent equilibrium in a stochastic, dynamic consumption/investment model. Math Oper Res 15, 80–128 (1990)CrossRefGoogle Scholar
  22. Keller-Ressel, M.: Affine Processes—Theory and Applications in Finance. Ph.D. thesis, Technical University of Vienna (2009)Google Scholar
  23. Keller-Ressel, M., Schachermayer, W., Teichmann, J.: Affine processes are regular. Probab Theory Relat Fields 151, 591–611 (2011)CrossRefGoogle Scholar
  24. Liptser, R., Shiryaev, A.: Statistics of Random Processes. I General Theory, 2nd edn. Berlin: Springer (2001)Google Scholar
  25. Mayerhofer, E., Keller-Ressel, M.: On Exponential Moments of Affine Processes. ArXiv e-prints (2011)Google Scholar
  26. Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Berlin: Springer (2005)Google Scholar
  27. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, Fundamental Principles of Mathematical Sciences, vol. 293, 3rd edn. Berlin: Springer (1999)Google Scholar
  28. Schachermayer, W., Teichmann, J.: How close are the option pricing formulas of Bachelier and Black–Merton–Scholes? Math Financ 18(1), 155–170 (2008)CrossRefGoogle Scholar
  29. Sircar, R., Sturm, S.: From Smile Asymptotics to Market Risk Measures. Math Financ (2011, to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ulrich Horst
    • 1
  • Michael Kupper
    • 1
  • Andrea Macrina
    • 2
  • Christoph Mainberger
    • 1
    Email author
  1. 1.Humboldt-Universität zu BerlinBerlinGermany
  2. 2.University College LondonLondonUK

Personalised recommendations