Annals of Finance

, Volume 9, Issue 2, pp 121–144 | Cite as

Asset market games of survival: a synthesis of evolutionary and dynamic games

  • Rabah Amir
  • Igor V. Evstigneev
  • Klaus Reiner Schenk-Hoppé


The paper examines a game-theoretic model of a financial market in which asset prices are determined endogenously in terms of a short-run equilibrium. Investors use general, adaptive strategies (portfolio rules) depending on the exogenous states of the world and the observed history of the game. The main goal is to identify portfolio rules, allowing an investor to “survive,” i.e., to possess a positive, bounded away from zero, share of market wealth over an infinite time horizon. The model under consideration combines a strategic framework characteristic for stochastic dynamic games with an evolutionary solution concept (survival strategies), thereby linking two fundamental paradigms of game theory.


Evolutionary finance Dynamic games Stochastic games Evolutionary game theory Games of survival 

JEL Classification

C73 D52 G11 



The authors are grateful to Yuri Kifer for fruitful discussions.


  1. Algoet, P.H., Cover, T.M.: Asymptotic optimality and asymptotic equipartition properties of log-optimum investment. Ann Probab 16, 876–898 (1988)CrossRefGoogle Scholar
  2. Amir, R., Evstigneev, I.V., Hens, T., Schenk-Hoppé, K.R.: Market selection and survival of investment strategies. J Math Econ 41, 105–122 (2005)CrossRefGoogle Scholar
  3. Amir, R., Evstigneev, I.V., Hens, T., Xu, L.: Evolutionary finance and dynamic games. Math Financ Econ 5, 161–184 (2011)CrossRefGoogle Scholar
  4. Arkin, V.I., Evstigneev, I.V.: Stochastic Models of Control and Economic Dynamics. London: Academic Press (1987)Google Scholar
  5. Bell, R.M., Cover, T.M.: Competitive optimality of logarithmic investment. Math Oper Res 5, 161–166 (1980)CrossRefGoogle Scholar
  6. Bell, R.M., Cover, T.M.: Game-theoretic optimal portfolios. Manag Sci 34, 724–733 (1988)CrossRefGoogle Scholar
  7. Bertsekas, D.P., Shreve, S.E.: Stochastic Optimal Control: The Discrete Time Case. New York: Academic Press (1978)Google Scholar
  8. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. New York: Springer (2011)Google Scholar
  9. Blume, L., Easley, D.: Evolution and market behavior. J Econ Theory 58, 9–40 (1992)CrossRefGoogle Scholar
  10. Blume, L., Easley, D.: If you are so smart, why aren’t you rich? Belief selection in complete and incomplete markets. Econometrica 74, 929–966 (2006)CrossRefGoogle Scholar
  11. Blume, L., Easley, D.: Market selection and asset pricing. In: Hens, T., Schenk-Hoppé, K.R. (eds.) Handbook of Financial Markets: Dynamics and Evolution, chap. 7, pp. 403–437. Amsterdam: North-Holland (2009)Google Scholar
  12. Borch, K.: A utility function derived from a survival game. Manag Sci 12, B287–B295 (1966)CrossRefGoogle Scholar
  13. Borel, E.: La théorie du jeu et les équations intégrales à noyau symétrique. CR Hebd Acad Sci 173, 1304–1308 (1921). English translation: Borel, E.: The theory of play and integral equations with skew symmetric kernels. Econometrica 21, 97–100 (1953)Google Scholar
  14. Borovkov, A.A.: Mathematical Statistics. Amsterdam: Gordon and Breach (1998)Google Scholar
  15. Boulding, K.E.: Evolutionary Economics. London: Sage (1981)Google Scholar
  16. Bouton, C.L.: Nim, a game with a complete mathematical theory. Ann Math 3, 35–39 (1901–1902)Google Scholar
  17. Breiman, L.: Optimal gambling systems for favorable games. In: Neyman, J. (ed.) Fourth Berkeley Symposium on Mathematical Statistics and Probability. Contributions to the Theory of Statistics, vol. 1, pp. 65–78. Berkeley: University of California Press (1961)Google Scholar
  18. Cabrales, A.: Stochastic replicator dynamics. Int Econ Rev 41, 451–481 (2000)CrossRefGoogle Scholar
  19. Dorfman, R., Samuelson, P.A., Solow, R.M.: Linear Programming and Economic Analysis. New York: McGraw-Hill (1958)Google Scholar
  20. Dynkin, E.B.: Game variant of a problem on optimal stopping. Sov Math Dokl 10, 270–274 (1969)Google Scholar
  21. Dynkin, E.B.: Stochastic concave dynamic programming. Math USSR Sbornik 16, 501–515 (1972)CrossRefGoogle Scholar
  22. Dynkin, E.B., Yushkevich, A.A.: Controlled Markov Processes and Their Applications. New York: Springer (1979)Google Scholar
  23. Dubins, L., Savage, L.M.: How to Gamble if You Must. New York: McGraw-Hill (1965)Google Scholar
  24. Evstigneev, I.V., Hens, T., Schenk-Hoppé, K.R.: Market selection of financial trading strategies: global stability. Math Financ 12, 329–339 (2002)CrossRefGoogle Scholar
  25. Evstigneev, I.V., Hens, T., Schenk-Hoppé, K.R.: Evolutionary stable stock markets. Econ Theor 27, 449–468 (2006)CrossRefGoogle Scholar
  26. Evstigneev, I.V., Hens, T., Schenk-Hoppé, K.R.: Globally evolutionarily stable portfolio rules. J Econ Theory 140, 197–228 (2008)CrossRefGoogle Scholar
  27. Evstigneev, I.V., Hens, T., Schenk-Hoppé, K.R.: Evolutionary finance. In: Hens, T., Schenk-Hoppé, K.R. (eds.) Handbook of Financial Markets: Dynamics and Evolution, chap. 9, pp. 507–566. Amsterdam: North-Holland (2009)Google Scholar
  28. Foster, D., Young, P.: Stochastic evolutionary game dynamics. Theor Popul Biol 38, 219–232 (1990)CrossRefGoogle Scholar
  29. Fudenberg, D., Harris, C.: Evolutionary dynamics with aggregate shocks. J Econ Theory 57, 420–441 (1992)CrossRefGoogle Scholar
  30. Gale, D.: On optimal development in a multi-sector economy. Rev Econ Stud 34, 1–18 (1967)CrossRefGoogle Scholar
  31. Gale, D., Stewart, F.M.: Infinite games with perfect information. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games II, Annals of Mathematical Studies, vol. 28, pp. 245–266. Princeton: Princeton University Press (1953)Google Scholar
  32. Germano, F.: Stochastic evolution of rules for playing finite normal form games. Theor Decis 62, 311–333 (2007)CrossRefGoogle Scholar
  33. Grandmont, J.-M. (ed.): Temporary Equilibrium. Academic Press, San Diego (1988)Google Scholar
  34. Hakansson, N.H., Ziemba, W.T.: Capital growth theory. In: Jarrow, R.A., Maksimovic, V., Ziemba, W.T. (eds.) Handbooks in Operations Research and Management Science, vol. 9, pp. 65–86. Finance, chap. 3. Amsterdam: Elsevier (1995)Google Scholar
  35. Hamilton, W.D.: Extraordinary sex ratios. Science 156, 477–488 (1967)CrossRefGoogle Scholar
  36. Haurie, A., Zaccour, G., Smeers, Y.: Stochastic equilibrium programming for dynamic oligopolistic markets. J Optim Theory Appl 66, 243–253 (1990)CrossRefGoogle Scholar
  37. Hodgeson, G.M.: Economics and Evolution: Bringing Life Back into Economics. Ann Arbor: University of Michigan Press (1993)Google Scholar
  38. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge: Cambridge University Press (1998)Google Scholar
  39. Karni, E., Schmeidler, D.: Self-preservation as a foundation of rational behavior under risk. J Econ Behav Organ 7, 71–81 (1986)CrossRefGoogle Scholar
  40. Kelly, J.L.: A new interpretation of information rate. Bell Syst Tech J 35, 917–926 (1956)Google Scholar
  41. Kifer, Yu.: Game options. Financ Stoch 4, 443–463 (2000)Google Scholar
  42. Kojima, F.: Stability and instability of the unbeatable strategy in dynamic processes. Int J Econ Theory 2, 41–53 (2006)CrossRefGoogle Scholar
  43. Luce R.D., Raiffa H.: Games and Decisions, 2nd edn. New York: Dover (1989)Google Scholar
  44. MacLean, L.C., Thorp, E.O., Ziemba, W.T. (eds.): The Kelly Capital Growth Investment Criterion: Theory and Practice. Singapore: World Scientific (2011)Google Scholar
  45. Magill, M., Quinzii, M.: Theory of Incomplete Markets. Cambridge: MIT Press (1996)Google Scholar
  46. Maitra, A.P., Sudderth, W.D.: Discrete Gambling and Stochastic Games. New York: Springer (1996)Google Scholar
  47. Martin, D.A.: Borel determinacy. Ann Math 102, 363–371 (1975)Google Scholar
  48. Maynard, Smith J.: Evolution and the Theory of Games. Cambridge: Cambridge University Press (1982)Google Scholar
  49. Maynard, Smith J., Price, G.: The logic of animal conflicts. Nature 246, 15–18 (1973)CrossRefGoogle Scholar
  50. McKenzie, L.W.: Optimal economic growth turnpike theorems and comparative dynamics. In: Arrow, K.J., Intrilligator, M.D. (eds.) Handbook of Mathematical Economics III, pp. 1281–1355. Amsterdam: North-Holland (1986)Google Scholar
  51. Milnor, J., Shapley, L.S.: On games of survival. In: Dresher, M., Tucker, A.W., Wolfe, P. (eds.) Contributions to the Theory of Games III, Annals of Mathematical Studies, vol. 39, pp. 15–45. Princeton: Princeton University Press (1957)Google Scholar
  52. Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard University Press, Cambridge (1991)Google Scholar
  53. Nelson, R.R., Winter, S.G.: An Evolutionary Theory of Economic Change. Cambridge: Harvard University Press (1982)Google Scholar
  54. Neveu, J.: Mathematical Foundations of the Calculus of Probability Theory. San Francisco: Holden Day (1965)Google Scholar
  55. Neyman, A., Sorin, S. (eds.): Stochastic Games and Applications (NATO ASI series). Dordrecht: Kluwer (2003)Google Scholar
  56. Nikaido, H.: Convex Structures and Economic Theory. New York: Academic Press (1968)Google Scholar
  57. Rockafellar, R.T., Wets, R.: Stochastic convex programming: basic duality. Pac J Math 62, 173–195 (1976)CrossRefGoogle Scholar
  58. Saks, S.: The Theory of Integral. New York: Dover (1964)Google Scholar
  59. Samuelson, L.: Evolutionary Games and Equilibrium Selection. Cambridge: MIT Press (1997)Google Scholar
  60. Sandholm, W.H.: Population Games and Evolutionary Dynamics. Cambridge: MIT Press (2010)Google Scholar
  61. Sandroni, A.: Do markets favor agents able to make accurate predictions? Econometrica 68, 1303–1341 (2000)CrossRefGoogle Scholar
  62. Schaffer, M.: Evolutionarily stable strategies for a finite population and a variable contest size. J Theor Biol 132, 469–478 (1988)CrossRefGoogle Scholar
  63. Schaffer, M.: Are profit-maximizers the best survivors? J Econ Behav Organ 12, 29–45 (1989)CrossRefGoogle Scholar
  64. Schumpeter, J.A.: Theorie der wirtschaftlichen Entwicklung. Duncker& Humblot, Leipzig (1911)Google Scholar
  65. Schwalbe, U., Walker, P.: Zermelo and the early history of game theory. Game Econ Behav 34, 123–137 (2001)CrossRefGoogle Scholar
  66. Sciubba, E.: Asymmetric information and survival in financial markets. Econ Theor 25, 353–379 (2005)CrossRefGoogle Scholar
  67. Secchi, P., Sudderth, W.D.: Stay-in-a-set games. Int J Game Theory 30, 479–490 (2001)CrossRefGoogle Scholar
  68. Shapley, L.S.: Stochastic games. Proc Natl Acad Sci USA 39, 1095–1100 (1953)CrossRefGoogle Scholar
  69. Shapley, L.S., Shubik, M.: Trade using one commodity as a means of payment. J Polit Econ 85, 937–968 (1977)CrossRefGoogle Scholar
  70. Shiller, R.J.: From efficient markets theory to behavioral finance. J Econ Perspect 17, 83–104 (2003)CrossRefGoogle Scholar
  71. Shleifer, A.: Inefficient Markets: An Introduction to Behavioral Finance. Oxford: Oxford University Press (2000)Google Scholar
  72. Shubik, M., Thompson, G.: Games of economic survival. Nav Res Logist Q 6, 111–123 (1959)CrossRefGoogle Scholar
  73. Shubik, M., Whitt, W.: Fiat money in an economy with one durable good and no credit. In: Blaquiere, A. (ed.) Topics in Differential Games, pp. 401–448. North-Holland, Amsterdam (1973)Google Scholar
  74. Telgársky, R.: Topological games: on the 50th anniversary of the Banach–Mazur game. Rocky Mt J Math 17, 227–276 (1987)CrossRefGoogle Scholar
  75. Thaler, R.H. (ed.): Advances in Behavioral Finance II. Princeton University Press, Princeton (2005)Google Scholar
  76. Thorp, E.O.: The Kelly criterion in Blackjack sports betting and the stock market. In: Zenios, S.A., Ziemba, W.T. (eds.) Handbook of Asset and Liability Management, vol. 1, pp. 387–428. Amsterdam: Elsevier (2006)Google Scholar
  77. Tversky, A., Kahneman, D.: Loss aversion in riskless choice: a reference-dependent model. Q J Econ 106, 1039–1061 (1991)CrossRefGoogle Scholar
  78. Vega-Redondo, F.: Evolution, Games, and Economic Behavior. Oxford: Oxford University Press (1996)Google Scholar
  79. Vieille, N.: Two-player stochastic games I: a reduction. Isr J Math 119, 55–91 (2000a)CrossRefGoogle Scholar
  80. Vieille, N.: Two-player stochastic games II: the case of recursive games. Isr J Math 119, 93–126 (2000b)CrossRefGoogle Scholar
  81. Vieille, N.: Small perturbations and stochastic games. Isr J Math 119, 127–142 (2000c)CrossRefGoogle Scholar
  82. von Neumann, J.: Zur Theorie der Gesellschaftsspiele. Math Ann 100, 295–320 (1928)CrossRefGoogle Scholar
  83. Wallace, S.W. (ed.): Applications of Stochastic Programming. Philadelphia: SIAM—Mathematical Programming Society Series on Optimization (2005)Google Scholar
  84. Weibull, J.: Evolutionary Game Theory. Cambridge: MIT Press (1995)Google Scholar
  85. Zermelo, E.: Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels. In: Hobson, E.W., Love, A.E.H. (eds.) Proceedings of the Fifth International Congress of Mathematicians (Cambridge 1912), vol. 2, pp. 501–504. Cambridge: Cambridge University Press (1913)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rabah Amir
    • 1
  • Igor V. Evstigneev
    • 2
  • Klaus Reiner Schenk-Hoppé
    • 3
    • 4
  1. 1.Department of EconomicsUniversity of ArizonaTucsonUSA
  2. 2.Economics Department, School of Social SciencesUniversity of ManchesterManchesterUK
  3. 3.Leeds University Business School and School of MathematicsUniversity of LeedsLeedsUK
  4. 4.Department of Finance and Management ScienceNHH—Norwegian School of EconomicsBergenNorway

Personalised recommendations