Annals of Finance

, Volume 4, Issue 2, pp 217–241 | Cite as

Fractals in trade duration: capturing long-range dependence and heavy tailedness in modeling trade duration

  • Wei Sun
  • Svetlozar Rachev
  • Frank J. Fabozzi
  • Petko S. Kalev
Research Article


Several studies that have investigated a few stocks have found that the spacing between consecutive financial transactions (referred to as trade duration) tend to exhibit long-range dependence, heavy tailedness, and clustering. In this study, we empirically investigate whether a larger sample of stocks exhibit those characteristics. We do so by comparing goodness of fit in modeling trade duration data for stable distribution and fractional stable noise based on a procedure applying bootstrap methods developed by the authors with several alternative distributional assumptions in modeling trade duration data. The empirical results suggest that the autoregressive conditional duration model with stable distribution fits better than other combinations, while fractional stable noise itself fits better for the time series of trade duration. Our result is consistent with the general findings in the literature that trade duration is informative and that short trade durations move prices more than long trade duration. In addition, our result confirms the advantage of fractal models in the study of roughness in trade duration and provides some evidence for duration dependence.


Fractal processes Point processes Self-Similarity Stable distribution Trade duration 

JEL Classification

C41 G14 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauwens, L.: Econometric analysis of intra-daily trading activity on Tokyo stock exchange. IMES Discussion Paper Series, 2005-E-3 (2005)Google Scholar
  2. Bauwens L., Giot P. (2000): The logarithmic ACD model: an application to the bid-ask quote process of three NYSE stocks. Annals d’Economie et de Statistique 60, 117–149Google Scholar
  3. Bauwens L., Giot P. (2003): Asymmetric ACD models: introducing price information in ACD models. Empir Econ 28, 709–731CrossRefGoogle Scholar
  4. Bauwens L., Giot P., Gramming J., Veredas D. (2004): A comparison of financial duration models via density forecasts. Int J Forecast 20, 589–609CrossRefGoogle Scholar
  5. Bauwens, L., Hautsch, N.: Modelling financial high frequency data with point processes. In: Andersen, T., Davis, R., Kreiss, J., Mikosch, T., (eds.) Handbook of Financial Time Series. Springer, Heidelberg (in press, 2007)Google Scholar
  6. Bauwens L., Veredas D. (2004): The stochastic conditional duration model: a latent variable model for the analysis of financial durations. J Econ 119, 381–412Google Scholar
  7. Cohen S., Samorodnitsky G. (2006): Random rewards, fractional Brownian local times and stable self-similar processes. Ann Appl Probab 16(3): 1432–1461CrossRefGoogle Scholar
  8. Daley D., Vere-Jones D. (2003): An introduction to the theory of point processes. Springer, New YorkGoogle Scholar
  9. Davies S., Hall P. (1999): Fractal analysis of surface roughness by using spatial data. J Roy Statist Soc B 61, 3–37CrossRefGoogle Scholar
  10. Diamond W., Verrecchia R. (1987): Constraints on short-selling and asset price adjustment to private information. J Financ Econ 18, 277–311CrossRefGoogle Scholar
  11. DiCiccio T.J., Efron B. (1996): Bootstrap confidence intervals. Statist Sci 11, 189–228CrossRefGoogle Scholar
  12. Doukhan, P., Oppenheim, G., Taqqu, M. (eds.): Theory and Applications of Long-Range Dependence. Birkhäuser: Boston (2003)Google Scholar
  13. Dufour A., Engle R. (2000): Time and the price impact of a trade. J Financ 55, 2467–2498CrossRefGoogle Scholar
  14. Engle R. (2000): The econometrics of ultra-high frequency data. Econometrica 68, 1–22CrossRefGoogle Scholar
  15. Engle R., Russell J.R. (1998): Autoregressive conditional duration: a new model for irregularly spaced transaction data. Econometrica 66, 1127–1162CrossRefGoogle Scholar
  16. Engle R., Lunde A. (2003): Trades and quotes: a bivariate point process. J Financ Econom 1, 159–188CrossRefGoogle Scholar
  17. Fama E. (1963): Mandelbrot and the stable Paretian hypothesis. J. Bus 36, 420–429CrossRefGoogle Scholar
  18. Feng D., Jiang G.J., Song P. (2004): Stochastic conditional duration models with “leverage effect” for financial transaction data. J Financ Econom 119, 413–433Google Scholar
  19. Fernandes M., Gramming J. (2005): Non-parametric specification tests for conditional duration models. J Econom, 127, 35–68CrossRefGoogle Scholar
  20. Fernandes M., Gramming J. (2006): A familiy of autoregressive conditional duration models. J Econom 130, 1–23CrossRefGoogle Scholar
  21. Furfine, C.: When is inter-transaction time informative? J Empir Financ (2007) doi:10.1016/j.jempfin. 2006.06.002Google Scholar
  22. Ghysels E., Jasiak J. (1998): GARCH for irregularly spaced financial data: the ACD-GARCH model. Stud. Nonlinear Dynam. Econometrics 2, 133–149CrossRefGoogle Scholar
  23. Ghysels E., Gouriéroux C., Jasiak J. (2004): Stochastic volatility duration models. J Econom 119, 413–433CrossRefGoogle Scholar
  24. Gramming J., Maurer K. (2000): Non-monotonic hazard functions and the autoregressive conditional duration model. Econometrics J 3, 16–38CrossRefGoogle Scholar
  25. Hasbrouck, J.: Modeling microstructure time series. In: Maddala, G., Rao, C.R. (eds.) Statistical Methods in Finance. Handbook of Statistics, vol. 14. North-Holland, Amsterdam (1996)Google Scholar
  26. Hurst H. (1951): Long-term storage capacity of reservoirs. Trans Am Soc Civil Eng 116, 770–808Google Scholar
  27. Hurst, H.: Methods of using long-term storage in reservoirs. Proc Inst Civil Eng Part I, 519-577 (1955)Google Scholar
  28. Jasiak J. (1998): Persistence in intertrade durations. Finance 19, 166–195Google Scholar
  29. Kolmogoroff A.N. (1940): Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. Comptes Rendus (Doklady) Acad Sci URSS (N.S.) 26, 115–118Google Scholar
  30. Lamperti J. (1962): Semi-stable stochastic Processes. Trans Am Math Soc 104, 62–78CrossRefGoogle Scholar
  31. Mandelbrot B.B. (1963): The variation of certain speculative prices. J Bus Univ Chicago 36, 394–419Google Scholar
  32. Mandelbrot B.B. (1997): Fractals and Scaling in Finance. Springer, New YorkGoogle Scholar
  33. Mandelbrot B.B. (2005): The inescapable need for fractal model tools in finance. Ann Financ 1, 193–195CrossRefGoogle Scholar
  34. Mandelbrot B.B., Van Ness J. (1968): Fractional Brownian motions, fractional noises and applications. SIAM Rev 10(4): 422–437CrossRefGoogle Scholar
  35. Maejima M., Rachev S. (1987): An ideal metric and the rate of convergence to a self-similar process. Ann Probab 15, 702–727CrossRefGoogle Scholar
  36. Manganelli S. (2005): Duration, volume and volatility impact of trades. J Financ Markets 8, 377–399CrossRefGoogle Scholar
  37. Mittnik S., Rachev S. (1993): Modeling asset returns with alternative stable models. Econom Rev 12, 261–330CrossRefGoogle Scholar
  38. O’Hara M. (1995): Market Microstructure Theory. Blackwell, CambridgeGoogle Scholar
  39. Rachev S., Mittnik S. (2000): Stable Paretian Models in Finance. Wiley, New YorkGoogle Scholar
  40. Rachev S., Samorodnitsky G. (2001): Long strange segments in a long range dependent moving average. Stoch Process Appl 93, 119–148CrossRefGoogle Scholar
  41. Samorodnitsky G. (1994): Possible sample paths of self-similar alpha-stable processes. Statist Probab Lett 19, 233–237CrossRefGoogle Scholar
  42. Samorodnitsky G., Taqqu M. (1994): Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  43. Simonsen O. (2007): An empirical model for durations in stocks. Ann Financ 3, 241–255CrossRefGoogle Scholar
  44. Stoev S., Pipiras V., Taqqu M. (2002): Estimation of the self-similarity parameter in liner fractional stable motion. Signal Process 82, 1873–1901CrossRefGoogle Scholar
  45. Stoev S., Taqqu M. (2004): Simulation methods for linear fractional stable motion and FARIMA using the Fast Fourier Transform. Fractals 12, 95–121CrossRefGoogle Scholar
  46. Sun, W., Rachev, S., Fabozzi, F.: Fractals or I.I.D.: evidence of long-range dependence and heavy tailedness from modeling German equity market returns. J Econ Bus (in press, 2007a)Google Scholar
  47. Sun, W., Rachev, S., Fabozzi, F.: Long-range dependence, fractal processes, and intra-daily data. In Seese, D., Weinhardt, C., Schlottmann, F. (eds.) IT and Finance. Springer, Heidelberg (in press, 2007b)Google Scholar
  48. Zhang M., Russell J., Tsay R. (2001): A nonlinear autoregressive conditional duration model with applications to financial transaction data. J Econom 104, 179–207CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Wei Sun
    • 1
  • Svetlozar Rachev
    • 1
    • 2
  • Frank J. Fabozzi
    • 3
    • 4
  • Petko S. Kalev
    • 5
  1. 1.Institute for Statistics and Mathematical EconomicsUniversity of KarlsruheKarlsruheGermany
  2. 2.Department of Statistics and Applied ProbabilityUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Yale School of ManagementNew HavenUSA
  4. 4.School of ManagementYale UniversityNew HavenUSA
  5. 5.Department of Accounting and FinanceMonash UniversityMelbourneAustralia

Personalised recommendations