Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester

Abstract

Galloping based piezoelectric energy harvester is a kind of micro-environmental energy harvesting device based on flow-induced vibrations. A novel tristable galloping-based piezoelectric energy harvester is constructed by introducing a nonlinear magnetic force on the traditional galloping-based piezoelectric energy harvester. Based on Euler–Bernoulli beam theory and Kirchhoff’s law, the corresponding aero-electromechanical model is proposed and validated by a series of wind tunnel experiments. The parametric study is performed to analyse the response of the tristable galloping-based piezoelectric energy harvester. Numerical results show that comparing with the galloping-based piezoelectric energy harvester, the mechanism of the tristable galloping-based piezoelectric energy harvester is more complex. With the increase of a wind speed, the vibration of the bluff body passes through three branches: intra-well oscillations, chaotic oscillations, and inter-well oscillations. The threshold wind speed of the presented harvester for efficiently harvesting energy is 1.0 m/s, which is decreased by 33% compared with the galloping-based piezoelectric energy harvester. The maximum output power of the presented harvester is 0.73 mW at 7.0 m/s wind speed, which is increased by 35.3%. Compared with the traditional galloping-based piezoelectric energy harvester, the presented tristable galloping-based piezoelectric energy harvester has a better energy harvesting performance from flow-induced vibrations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Li, X.M., Li, D., Wan, J.F., et al.: A review of industrial wireless networks in the context of Industry 4.0. Wireless Netw. 23, 23–41 (2017)

  2. 2.

    Azizi, S., Ghodsi, A., Jafari, H., et al.: A conceptual study on the dynamics of a piezoelectric MEMS (micro electro mechanical system) energy harvester. Energy. 96, 495–506 (2016)

  3. 3.

    Zeng, Y., Zhang, R., Lim, T.J.: Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun. Mag. 54, 36–42 (2016)

  4. 4.

    Wang, Z.L., Jiang, T., Xu, L.: Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy. 39, 9–23 (2017)

  5. 5.

    Chen, J., Wang, Z.L.: Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule. 1, 480–521 (2017)

  6. 6.

    Hu, G., Wang, J., Su, Z., et al.: Performance evaluation of twin piezoelectric wind energy harvesters under mutual interference. Appl. Phys. Lett. 115(7), 073901 (2019)

  7. 7.

    Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Power harvesting from transverse galloping of square cylinder. Nonlinear Dyn. 70, 1355–1363 (2012)

  8. 8.

    Zhang, L., Dai, H., Abdelkefi, A., et al.: Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters. Appl. Energy 254, 113737 (2019)

  9. 9.

    Yang, K., Wang, J., Yurchenko, D.: A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting. Appl. Phys. Lett. 115(19), 193901 (2019)

  10. 10.

    Zhang, Y., Wang, T., Luo, A., et al.: Micro electrostatic energy harvester with both broad bandwidth and high normalized power density. Appl. Energy 212, 362–371 (2018)

  11. 11.

    Zhang, Y., Wang, T., Zhang, A., et al.: Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency. Rev. Sci. Instrum. 87, 125001 (2016)

  12. 12.

    Thomson, G., Yurchenko, D., Val, D.V., et al.: Predicting energy output of a stochastic nonlinear dielectric elastomer generator. Energy Convers. Manag. 196, 1445–1452 (2019)

  13. 13.

    Thomson, G., Lai, Z., Val, D.V., et al.: Advantages of nonlinear energy harvesting with dielectric elastomers. J. Sound Vib. 442, 167–182 (2019)

  14. 14.

    Sodano, H.A., Anton, S.R.: A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018). Smart Mater. Struct. 28, 113001 (2019)

  15. 15.

    Zou, Q., Ding, L., Wang, H., et al.: Two-degree-of-freedom flow-induced vibration of a rotating circular cylinder. Ocean Eng. 191, 106505 (2019)

  16. 16.

    Abdelkefi, A., Yan, Z., Hajj, M.R.: Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping. Smart Mater. Struct. 22, 025016 (2013)

  17. 17.

    Abdelkefi, A., Yan, Z., Hajj, M.R.: Performance analysis of galloping-based piezoaeroelastic energy harvesters with different cross-section geometries. J. Intell. Mater. Syst. Struct. 25, 246–256 (2014)

  18. 18.

    Tang, L., Zhao, L., Yang, Y., et al.: Equivalent circuit representation and analysis of galloping-based wind energy harvesting. IEEE/ASME Trans. Mechatron. 20, 834–844 (2015)

  19. 19.

    Zhao, L., Yang, Y.: An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting. Appl. Energy 212, 233–243 (2018)

  20. 20.

    Zhang, L., Dai, H., Abdelkefi, A., et al.: Improving the performance of aeroelastic energy harvesters by an interference cylinder. Appl. Phys. Lett. 111, 073904 (2017)

  21. 21.

    Ma, Y., Luan, Y., Xu, W.: Hydrodynamic features of three equally spaced, long flexible cylinders undergoing flow-induced vibration. Eur. J. Mech. B Fluids. 79, 386–400 (2020)

  22. 22.

    Abdelmoula, H., Abdelkefi, A.: The potential of electrical impedance on the performance of galloping systems for energy harvesting and control applications. J. Sound Vib. 370, 191–208 (2016)

  23. 23.

    Tan, T., Yan, Z., Lei, H.: Optimization and performance comparison for galloping-based piezoelectric energy harvesters with alternating-current and direct-current interface circuits. Smart Mater. Struct. 26, 075007 (2017)

  24. 24.

    Tan, T., Yan, Z.: Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters with inductive-resistive circuits and its application in galloping mode. Smart Mater. Struct. 26, 035062 (2017)

  25. 25.

    Hu, G., Tse, K., Wei, M., et al.: Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments. Appl. Energy 226, 682–689 (2018)

  26. 26.

    Wang, J., Zhou, S., Zhang, Z., et al.: High-performance piezoelectric wind energy harvester with Y-shaped attachments. Energy Convers. Manage. 181, 645–652 (2019)

  27. 27.

    Yang, X., He, X., Li, J., et al.: Modeling and verification of piezoelectric wind energy harvesters enhanced by interaction between vortex-induced vibration and galloping. Smart Mater, Struct (2019)

  28. 28.

    Arrieta, A., Neild, S., Wagg, D.: Nonlinear dynamic response and modeling of a bi-stable composite plate for applications to adaptive structures. Nonlinear Dyn. 58, 259 (2009)

  29. 29.

    Arrieta, A., Hagedorn, P., Erturk, A., et al.: A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. 97, 104102 (2010)

  30. 30.

    Mcinnes, C., Gorman, D., Cartmell, M.P.: Enhanced vibrational energy harvesting using nonlinear stochastic resonance. J. Sound Vib. 318, 655–662 (2008)

  31. 31.

    Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330, 2339–2353 (2011)

  32. 32.

    Stanton, S.C., Mcgehee, C.C., Mann, B.P.: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 95, 174103 (2009)

  33. 33.

    Zhao, S., Erturk, A.: On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system. Appl. Phys. Lett. 102, 103902 (2013)

  34. 34.

    Green, P.L., Papatheou, E., Sims, N.D.: Energy harvesting from human motion and bridge vibrations: an evaluation of current nonlinear energy harvesting solutions. J. Intell. Mater. Syst. Struct. 24, 1494–1505 (2013)

  35. 35.

    Ferrari, M., Ferrari, V., Guizzetti, M., et al.: Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens. Actuator A Phys. 162, 425–431 (2010)

  36. 36.

    Zhou, S., Zuo, L.: Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Commun. Nonlinear Sci. Numer. Simul. 61, 271–284 (2018)

  37. 37.

    Zhou, S., Cao, J., Inman, D.J., et al.: Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. J. Sound Vib. 373, 223–235 (2016)

  38. 38.

    Haitao, L., Weiyang, Q., Chunbo, L., et al.: Dynamics and coherence resonance of tri-stable energy harvesting system. Smart Mater. Struct. 25, 015001 (2015)

  39. 39.

    Younesian, D., Alam, M.-R.: Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting. Appl. Energy 197, 292–302 (2017)

  40. 40.

    Zhou, Z., Qin, W., Zhu, P., et al.: Scavenging wind energy by a dynamic-stable flutter energy harvester with rectangular wing. Appl. Phys. Lett. 114, 243902 (2019)

  41. 41.

    Bibo, A., Alhadidi, A.H., Daqaq, M.F.: Exploiting a nonlinear restoring force to improve the performance of flow energy harvesters. J. Appl. Phys. 117, 045103 (2015)

  42. 42.

    Zhang, L., Abdelkefi, A., Dai, H., et al.: Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations. J. Sound Vib. 408, 210–219 (2017)

  43. 43.

    Wang, J., Tang, L., Zhao, L., et al.: Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies. Energy 172, 1066–1078 (2019)

  44. 44.

    Zhao, L., Tang, L., Yang, Y.: Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester. Smart Mater. Struct. 22, 125003 (2013)

  45. 45.

    Nemes, A., Zhao, J., Jacono, D.L., et al.: The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack. J. Fluid Mech. 710, 102–130 (2012)

  46. 46.

    Zhou, S., Cao, J., Inman, D.J., et al.: Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133, 33–39 (2014)

  47. 47.

    Harne, R.L., Wang, K.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013)

  48. 48.

    Tang, L., Zhao, L., Yang, Y., et al.: Equivalent circuit representation and analysis of galloping-based wind energy harvesting. IEEE/ASME Trans. Mechatron. 20, 834–844 (2014)

  49. 49.

    Tabesh, A., Fréchette, L.G.: On the concepts of electrical damping and stiffness in design of a piezoelectric bending beam energy harvester. Proc. Power MEMS 2009, 368–371 (2009)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 51606171, 51977196, and 11802237) and China Postdoctoral Science Foundation (Grant 2019M652565).

Author information

Correspondence to Shengxi Zhou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Geng, L., Zhou, S. et al. Design, modeling and experiments of broadband tristable galloping piezoelectric energy harvester. Acta Mech. Sin. (2020). https://doi.org/10.1007/s10409-020-00928-5

Download citation

Keywords

  • Energy harvesting
  • Galloping
  • Tristable
  • Flow induced vibrations