Advertisement

Acta Mechanica Sinica

, Volume 35, Issue 4, pp 740–749 | Cite as

Numerical study on shock–dusty gas cylinder interaction

  • Jingyue Yin
  • Juchun DingEmail author
  • Xisheng Luo
  • Xin Yu
Research Paper
  • 83 Downloads

Abstract

The interaction of a planar shock wave with a dusty-gas cylinder is numerically studied by a compressible multi-component solver with an adaptive mesh refinement technique. The influence of non-equilibrium effect caused by the particle relaxation, which is closely related to the particle radius and shock strength, on the evolution of particle cylinder is emphasized. For a very small particle radius, the particle cloud behaves like an equilibrium gas cylinder with the same physical properties as those of the gas–particle mixture. Specifically, the transmitted shock converges continually within the cylinder and then focuses at a region near the downstream interface, producing a local high-pressure zone followed by a particle jet. Also, noticeable secondary instabilities emerge along the cylinder edge and the evident particle roll-up causes relatively large width and height of the shocked cylinder. As the particle radius increases, the flow features approach those of a frozen flow of pure air, e.g., the transmitted shock propagates more quickly with a weaker strength and a smaller curvature, resulting in an increasingly weakened shock focusing and particle jet. Also, particles would escape from the vortex core formed at late stages due to the larger inertia, inducing a greater particle dispersion. It is found that a large particle radius as well as a strong incident shock can facilitate such particle escape. The theory of Luo et al. (J. Fluid Mech., 2007) combined with the Samtaney–Zabusky (SZ) circulation model (J. Fluid Mech., 1994) can reasonably explain the high dependence of particle escape on the particle radius and shock strength.

Keywords

Dusty-gas cylinder Non-equilibrium effect Shock wave Instability 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 11802304 and 11625211) and the Science Challenging Project (Grant TZ2016001).

References

  1. 1.
    Zhang, F., Frost, D.L., Thibault, P.A., et al.: Explosive dispersal of solid particles. Shock Waves 10, 431–443 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Popel, S.I., Gisko, A.A.: Charged dust and shock phenomena in the solar system. Nonlinear Process. Geophys. 13, 223–229 (2006)CrossRefGoogle Scholar
  3. 3.
    Jenkins, C.M., Ripley, R.C., Wu, C.Y., et al.: Explosively driven particle fields imaged using a high speed framing camera and particle image velocimetry. Int. J. Multiphase Flow 51, 73–86 (2013)CrossRefGoogle Scholar
  4. 4.
    Balakrishnan, K.: On bubble and spike oscillations in a dusty gas Rayleigh–Taylor instability. Laser Part. Beams 30, 633–638 (2012)CrossRefGoogle Scholar
  5. 5.
    Ranjan, D., Oakley, J., Bonazza, R.: Shock–bubble interactions. Annu. Rev. Fluid Mech. 43, 117–140 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ou, J., Zhai, Z.: Effects of aspect ratio on shock–cylinder interaction. Acta Mech. Sin. 35, 61–69 (2019)CrossRefGoogle Scholar
  7. 7.
    Zhai, Z., Si, T., Zou, L.: Jet formation in shock–heavy gas bubble interaction. Acta Mech. Sin. 29, 24–35 (2013)CrossRefGoogle Scholar
  8. 8.
    Rudinger, G., Somers, L.M.: Behaviour of small regions of different gases carried in accelerated gas flows. J. Fluid Mech. 7, 161–176 (1960)CrossRefzbMATHGoogle Scholar
  9. 9.
    Haas, J.F., Sturtevan, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987)CrossRefGoogle Scholar
  10. 10.
    Collins, B.D., Jacobs, J.W.: PLIF flow visualization and measurements of the Richtmyer–Meshkov instability of an air/SF6 interface. J. Fluid Mech. 464, 113–136 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Jacobs, J.W.: The dynamics of shock accelerated light and heavy gas cylinders. Phys. Fluids A 5, 2239–2247 (1993)CrossRefGoogle Scholar
  12. 12.
    Layes, G., Le Métayer, O.: Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion. Phys. Fluids 19, 042105 (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Ou, J., Ding, J., Luo, X., et al.: Effects of Atwood number on shock focusing in shock–cylinder interaction. Exp. Fluids 59, 29–39 (2018)CrossRefGoogle Scholar
  14. 14.
    Zou, L., Liao, S., Liu, C., et al.: Aspect ratio effect on shock–accelerated elliptic gas cylinders. Phys. Fluids 28(3), 297–319 (2016)CrossRefGoogle Scholar
  15. 15.
    Ding, J., Si, T., Chen, M., et al.: On the interaction of a planar shock with a three-dimensional light gas cylinder. J. Fluid Mech. 828, 289–317 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ding, J., Liang, Y., Chen, M., et al.: Interaction of planar shock wave with three-dimensional heavy cylindrical bubble. Phys. Fluids 30, 106109 (2018)CrossRefGoogle Scholar
  17. 17.
    Balakrishnan, K., Menon, S.: On the role of ambient reactive particles in the mixing and afterburn behind explosive blast waves. Combust. Sci. Technol. 182, 186–214 (2010)CrossRefGoogle Scholar
  18. 18.
    Boiko, V.M., Kiselev, V.P., Kiselev, S.P., et al.: Shock wave interaction with a cloud of particles. Shock Waves 7, 275–285 (1997)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kiselev, V.P., Kiselev, S.P., Vorozhtsov, E.V.: Interaction of a shock wave with a particle cloud of finite size. Shock Waves 16, 53–64 (2006)CrossRefzbMATHGoogle Scholar
  20. 20.
    Ota, O.A., Barton, C.J., Holder, D.A.: Shock tube experiment: half-height dense gas region. Phys. Scr. T 132, 014015 (2008)CrossRefGoogle Scholar
  21. 21.
    Ukai, S., Balakrishnan, K., Menon, S.: On Richtmyer–Meshkov instability in dilute gas–particle mixtures. Phys. Fluids 22, 104103 (2010)CrossRefGoogle Scholar
  22. 22.
    Vorobieff, P., Anderson, M., Conroy, J., et al.: Vortex formation in a shock–accelerated gas induced by particle seeding. Phys. Rev. Lett. 106, 184503 (2011)CrossRefGoogle Scholar
  23. 23.
    Rudinger, G.: Some properties of shock relaxation in gas flows carrying small particles. Phys. Fluids 7, 658–663 (1964)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Saito, T., Marumoto, M., Takayama, K.: Numerical investigations of shock waves in gas–particle mixtures. Shock Waves 13, 299–322 (2003)CrossRefzbMATHGoogle Scholar
  25. 25.
    Yin, J., Ding, J., Luo, X.: Numerical study on dusty shock reflection over a double wedge. Phys. Fluids 30, 013304 (2018)CrossRefGoogle Scholar
  26. 26.
    Saito, T., Saba, M., Sun, M., et al.: The effect of an unsteady drag force on the structure of a non-equilibrium region behind a shock wave in a gas–particle mixture. Shock Waves 17, 255–262 (2007)CrossRefzbMATHGoogle Scholar
  27. 27.
    Crowe, C.T.: Drag coefficient of particles in a rocket nozzle. AIAA J. 5, 1021–1022 (1967)CrossRefGoogle Scholar
  28. 28.
    Hermsen, R.W.: Review of particle drag models. In: JANAF Performance Standardization Subcommittee 12th Meeting Minutes. CPIA Publication, vol. 113 (1979)Google Scholar
  29. 29.
    Gilbert, M., Davis, L., Altman, D.: Velocity lag of particles in linearly accelerated combustion gases. Jet Propuls. 25, 26–30 (1955)CrossRefGoogle Scholar
  30. 30.
    Knudsen, J.G., Katz, D.L.: Fluid Mechanics and Heat Transfer. McGraw-Hill, New York (1958)zbMATHGoogle Scholar
  31. 31.
    Drake, R.M.: Discussion: ’forced convection heat transfer from an isothermal sphere to water’ (Vliet, GC, and Leppert, G., 1961, ASME J. Heat Transfer, 83, 163–170). J. Heat Transf. 83, 170–172 (1961)CrossRefGoogle Scholar
  32. 32.
    Gottlieb, J.J., Coskunses, C.E.: Effects of particle volume on the structure of a partly dispersed normal shock wave in a dusty gas. NASA STI/Recon Technical Report N, vol. 86 (1985)Google Scholar
  33. 33.
    Sauer, F.M.: Convective heat transfer from spheres in a free-molecular flow. J. Aeronaut. Sci. 18, 353–354 (1951)CrossRefzbMATHGoogle Scholar
  34. 34.
    Wang, X., Yang, D., Wu, J., et al.: Interaction of a weak shock wave with a discontinuous heavy-gas cylinder. Phys. Fluids 27, 064104 (2015)CrossRefGoogle Scholar
  35. 35.
    Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297–319 (1960)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Luo, X., Lamanna, G., Holten, A.P.C., et al.: Effects of homogeneous condensation in compressible flows: Ludwieg-tube experiments and simluations. J. Fluid Mech. 572, 339–366 (2007)CrossRefzbMATHGoogle Scholar
  37. 37.
    Picone, J.M., Boris, J.P.: Vorticity generation by shock propagation through bubbles in a gas. J. Fluid Mech. 189, 23–51 (1988)CrossRefGoogle Scholar
  38. 38.
    Samtaney, R., Zabusky, N.J.: Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws. J. Fluid Mech. 269, 45–78 (1994)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing Institute of Applied Physics and Computational MathematicsBeijingChina
  2. 2.Advanced Propulsion Laboratory, Department of Modern MechanicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations