Advertisement

Acta Mechanica Sinica

, Volume 35, Issue 4, pp 926–939 | Cite as

Single-leg weight limit of fixation model of simple supracondylar fracture of femur

  • Guo-Yu Bai
  • Xiang-Hong XuEmail author
  • Jin-Hui Wang
  • Ning Sun
Research Paper
  • 14 Downloads

Abstract

Early postoperative rehabilitation training for supracondylar fracture of femur aids in accelerating healing with shorter recovery periods. Presently, clinical studies on early postoperative weight training are still in the nascent stage. The weight-bearing capacity at different healing stages typically depends on clinical experience, and there is a lack of standards to quantify the weight that is conducive to healing of fractures. In this paper, a three-dimensional (3D) geometric model of the femur is obtained using imaging data, a locking plate fixation model of a simple supracondylar fracture of the femur, considering the angle and spatial direction of the fracture surface, is established, the stress distribution and load transmission mechanism of the fracture fixation model in a single-leg standing posture are studied, and the weight-bearing capacity of a standing single leg at the early stage of fracture is given. This provides the basis for objective quantification of early postoperative weight-bearing capacity.

Keywords

Simple supracondylar fracture of femur Early weight bearing Single-leg weight limit 

Notes

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grants 11672297, 11872273, and 11472191), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB22020200), and the Opening Fund of the State Key Laboratory of Nonlinear Mechanics.

References

  1. 1.
    Kolmert, L., Wulff, K.: Epidemiology and treatment of distal femoral fractures in adults. Acta Orthop. Scand. 53, 957–962 (1982)CrossRefGoogle Scholar
  2. 2.
    Richard, E.B., Christopher, G.M., Theerachai, A.: AO principles of fracture management 2 vols. (3rd edn.) Aotrauma (2017)Google Scholar
  3. 3.
    Kubiak, E.N., Fulkerson, E., Strauss, E., et al.: The evolution of locked plates. J. Bone Jt. Surg. (Am.) 88, 189–200 (2006)Google Scholar
  4. 4.
    Liang, B., Ding, Z., Shen, J., et al.: A distal femoral supra-condylar plate: biomechanical comparison with condylar plate and first clinical application for treatment of supracondylar fracture. Int. Orthop. 36, 1673–1679 (2012)CrossRefGoogle Scholar
  5. 5.
    Macleod, A.R., Pankaj, P.: Pre-operative planning for fracture fixation using locking plates: device configuration and other considerations. Injury 49, 12–18 (2018)CrossRefGoogle Scholar
  6. 6.
    Claes, L.: Biomechanical principles and mechanobiologic aspects of flexible and locked plating. J. Orthop. Trauma 25, 4–7 (2011)CrossRefGoogle Scholar
  7. 7.
    Perren, S.M.: Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J. Bone Jt. Surg. (Bri.) 84, 1093–1100 (2002)CrossRefGoogle Scholar
  8. 8.
    Feng, X.Q., Lee, P.V.S., Lim, C.T.: Preface: molecular, cellular, and tissue mechanobiology. Acta. Mech. Sin. 33, 219–221 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Adachi, T., Kameo, Y.: Computational Biomechanics of Bone Adaptation by Remodeling, vol. 578, pp. 231–259. Springer, Berlin (2018)Google Scholar
  10. 10.
    Qin, Q.H., Wang, Y.N.: A mathematical model of cortical bone remodeling at cellular level under mechanical stimulus. Acta. Mech. Sin. 28, 1678–1692 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kenwright, J., Goodship, A., Evans, M., et al.: The influence of intermittent micromovement upon the healing of experimental fractures. Orthopedics 7, 481–484 (1984)Google Scholar
  12. 12.
    Goodship, A.E., Cunningham, J.L., Kenwright, J., et al.: Strain rate and timing of stimulation in mechanical modulation of fracture healing. Clin. Orthop. Relat. Res. 355, 105–115 (1998)CrossRefGoogle Scholar
  13. 13.
    Arazi, M., Oktar, M.N., Memik, R., et al.: Early weight-bearing after statically locked reamed intramedullary nailing of comminuted femoral fractures: is it a safe procedure? J. Trauma 50, 711–716 (2001)CrossRefGoogle Scholar
  14. 14.
    Adam, P., Bonnomet, F., Ehlinger, M.: Advantage and limitations of a minimally-invasive approach and early weight bearing in the treatment of tibial shaft fractures with locking plates. Orthop. Traumatol. Sur. 98, 564–569 (2012)CrossRefGoogle Scholar
  15. 15.
    Kalmet, P., Sanduleanu, S., Horn, Y.V., et al.: Is early weight bearing allowed in surgically treated talar neck fractures? J. Orthop. Case Rep. 6, 73–74 (2016)Google Scholar
  16. 16.
    Elkins, J., Lawrence, M.J., Lujan, T., et al.: Motion predicts clinical callus formation: construct-specific finite element analysis of supracondylar femoral fractures. J. Bone Jt. Surg. (Am.) 98, 276–284 (2016)CrossRefGoogle Scholar
  17. 17.
    Bottlang, M., Tsai, S., Bliven, E.K., et al.: Dynamic stabilization with active locking plates delivers faster, stronger, and more symmetric fracture-healing. J. Bone Jt. Surg. 98, 466–474 (2016)CrossRefGoogle Scholar
  18. 18.
    Lotz, J.C., Gerhart, T.N., Hayes, W.C.: Mechanical properties of metaphyseal bone in the proximal femur. J. Biomech. 24, 317–329 (1991)CrossRefGoogle Scholar
  19. 19.
    Lotz, J.C., Gerhart, T.N., Hayes, W.C.: Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study. J. Comput. Assist. Tomogr. 14, 107–114 (1990)CrossRefGoogle Scholar
  20. 20.
    Rho, J.Y., Hobatho, M.C., Ashman, R.B.: Relations of mechanical properties to density and CT numbers in human bone. Med. Eng. Phys. 17, 347–355 (1995)CrossRefGoogle Scholar
  21. 21.
    Rho, J.Y., Kuhn-Spearing, L., Zioupos, P.: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92–102 (1998)CrossRefGoogle Scholar
  22. 22.
    Gong, H., Zhang, M., Fan, Y., et al.: Relationships between femoral strength evaluated by nonlinear finite element analysis and BMD, material distribution and geometric morphology. Ann. Biomed. Eng. 40, 1575–1585 (2012)CrossRefGoogle Scholar
  23. 23.
    Linwei, L., Meng, G., Gong, H., et al.: Tissue level microstructure and mechanical properties of the femoral head in the proximal femur of fracture patients. Acta. Mech. Sin. 31, 259–267 (2015)CrossRefGoogle Scholar
  24. 24.
    Carter, D.R., Hayes, W.C.: The compressive behavior of bone as a two-phase porous structure. J. Bone Jt. Surg. (Am.) 59, 954–962 (1977)CrossRefGoogle Scholar
  25. 25.
    Carter, D.R., Hayes, W.C.: Bone compressive strength: the influence of density and strain rate. Science 194, 1174–1176 (1976)CrossRefGoogle Scholar
  26. 26.
    Morgan, E.F., Bayraktar, H.H., Keaveny, T.M.: Trabecular bone modulus-density relationships depend on anatomic site. J. Biomech. 36, 897–904 (2003)CrossRefGoogle Scholar
  27. 27.
    Wirtz, D.C., Schiffers, N., Pandorf, T., et al.: Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. J. Biomech. 33, 1325–1330 (2000)CrossRefGoogle Scholar
  28. 28.
    Kopperdahl, D.L., Aspelund, T., Hoffmann, P.F., et al.: Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J. Bone Miner. Res. 29, 570–580 (2014)CrossRefGoogle Scholar
  29. 29.
    Keyak, J.H., Skinner, H.B.: Three-dimensional finite element modelling of bone: effects of element size. J. Biomed. Eng. 14, 483–489 (1992)CrossRefGoogle Scholar
  30. 30.
    Bessho, M., Ohnishi, I., Matsuyama, J., et al.: Prediction of strength and strain of the proximal femur by a CT-based finite element method. J. Biomech. 40, 1745–1753 (2007)CrossRefGoogle Scholar
  31. 31.
    Garcia, J.M., Doblare, M., Seral, B., et al.: Three-dimensional finite element analysis of several internal and external pelvis fixations. J. Biomech. Eng. 122, 516–522 (2000)CrossRefGoogle Scholar
  32. 32.
    Keyak, J.H., Rossi, S.A., Jones, K.A., et al.: Prediction of femoral fracture load using automated finite element modeling. J. Biomech. 31, 125–133 (1998)CrossRefGoogle Scholar
  33. 33.
    Dalstra, M., Huiskes, R., Erning, L.V.: Development and validation of a three-dimensional finite element model of the pelvic bone. J. Biomech. Eng. 117, 272–278 (1995)CrossRefGoogle Scholar
  34. 34.
    Perillo-Marcone, A., Alonso-Vazquez, A., Taylor, M.: Assessment of the effect of mesh density on the material property discretisation within QCT based FE models: a practical example using the implanted proximal tibia. Comput. Methods Biomech. 6, 17–26 (2003)CrossRefGoogle Scholar
  35. 35.
    Isaksson, H., Wilson, W., Donkelaar, C.C., et al.: Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. J. Biomech. 39, 1507–1516 (2006)CrossRefGoogle Scholar
  36. 36.
    ASTM F1314-2007.: Standard specification for wrought nitrogen strengthened 22 chromium-13 nickel-5 manganese-2.5 molybdenum stainless steel alloy bar and wire for surgical implants (2007)Google Scholar
  37. 37.
    Döbele, S., Horn, C., Eichhorn, S., et al.: The dynamic locking screw (DLS) can increase interfragmentary motion on the near cortex of locked plating constructs by reducing the axial stiffness. Langenbeck. Arch. Surg. 395, 421–428 (2010)CrossRefGoogle Scholar
  38. 38.
    Chantarapanich, N., Sitthiseripratip, K., Mahaisavariya, B., et al.: Biomechanical performance of retrograde nail for supracondylar fractures stabilization. Med. Biol. Eng. Comput. 54, 939–952 (2016)CrossRefGoogle Scholar
  39. 39.
    Mehboob, H., Kim, J., Mehboob, A., et al.: How post-operative rehabilitation exercises influence the healing process of radial bone shaft fractures fixed by a composite bone plate. Compos. Struct. 159, 307–315 (2017)CrossRefGoogle Scholar
  40. 40.
    Miramini, S., Zhang, L.H., Richardson, M., et al.: The relationship between interfragmentary movement and cell differentiation in early fracture healing under locking plate fixation. Aust. Phys. Eng. S. 39, 123–133 (2016)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Guo-Yu Bai
    • 1
    • 2
  • Xiang-Hong Xu
    • 2
    Email author
  • Jin-Hui Wang
    • 3
  • Ning Sun
    • 3
  1. 1.Tianjin Key Laboratory of Modern Engineering Mechanics, Department of MechanicsTianjin UniversityTianjinChina
  2. 2.State Key Laboratory of Nonlinear Mechanics, Institute of MechanicsChinese Academy of SciencesBeijingChina
  3. 3.Beijing Jishuitan HospitalBeijingChina

Personalised recommendations