Acta Mechanica Sinica

, Volume 35, Issue 1, pp 88–98 | Cite as

Mechanical properties of 65Mn chiral structure with three ligaments

  • X. W. SuEmail author
  • D. M. Zhu
  • C. Zheng
  • M. M. Tomovic
Research Paper


Chiral honeycomb structures have been developed in recent years, showing excellent mechanical properties, including in-plane deformation and out-of-plane bearing and vibration isolation. In this study, the 65Mn chiral structure with three ligaments was modeled and analyzed using the finite element (FE) method. The effects of the dimensionless ligament length and dimensionless ligament thickness on the in-plane equivalent elastic modulus, equivalent Poisson’s ratio, and out-of-plane shear modulus were studied. The numerical results indicate that increase of the dimensionless ligament length leads to decrease of the equivalent elastic modulus and increase of the equivalent Poisson’s ratio, whereas the out-of-plane equivalent shear modulus decreases. The results also indicate that increase of the dimensionless ligament thickness leads to increase of the equivalent elastic modulus, whereas the equivalent Poisson’s ratio remains nearly unchanged and the out-of-plane equivalent shear modulus shows a linear increase. The numerical results are verified by comparison with published experimental data. These results will provide a reference for the application of chiral structures with three ligaments in the aerospace field.


Chiral structure with three ligaments Mechanical properties Finite element method 



The authors would like to express their appreciation to the Beijing Excellent Talents Training Program (Grant 2014000020124G072) and China Scholarship Council.


  1. 1.
    Song, D., Xiao, X., Xue, J., et al.: Mechanical properties of irradiated multi-phase polycrystalline BCC materials. Acta Mech. Sin. 31, 191–204 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Fu, L., Wang, W.: The equivalent calculation and experimental study of honeycomb sandwich plates for satellite. Sci. Technol. Eng. 8, 6429–6432 (2008)Google Scholar
  3. 3.
    Spodoni, A., Ruzzene, M.: Numerical and experimental analysis of the static compliance of chiral truss-core airfoils. J. Mech. Mater. Struct. 2, 965–981 (2007)CrossRefGoogle Scholar
  4. 4.
    Spadoni, A., Ruzzene, M.: Structural and acoustic behavior of chiral truss-core beams. J. Vib. Acoust. 128, 616–626 (2006)CrossRefGoogle Scholar
  5. 5.
    Spadoni, A., Ruzzene, M., Scarpa, F.: Dynamic response of chiral truss-core assemblies. J. Intell. Mater. Syst. Struct. 17, 941–952 (2006)CrossRefGoogle Scholar
  6. 6.
    Fu, M., Liu Z., Liu Y.: An equivalent single-layer model of honeycomb sandwich panel. Eng. Mech. A01, 700–704 (2001) Google Scholar
  7. 7.
    Cheng, G., Zheng, X., Zhang, D., et al.: Equivalent-panel mechanics analysis of honeycomb sandwich structure. J. Proj. Rockets Missiles Guidance 24, 568–573 (2004)Google Scholar
  8. 8.
    Zhao, X.: Analysis of mechanical properties of deformable honeycomb structure. [Ph.D. Thesis], Harbin Institute of Technology, China (2013)Google Scholar
  9. 9.
    Spadoni, A., Ruzzene, M., Gonella, S., et al.: Phononic properties of hexagonal chiral lattices. Wave Motion 46, 435–450 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Alderson, K.L., Alderson, D., Attard, K.E., et al.: Elastic constants of 3-,4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Compos. Sci. Technol. 70, 1042–1048 (2010)CrossRefGoogle Scholar
  11. 11.
    Miller, W., Smith, C.W., Scarpa, F., et al.: Flatwise buckling optimization of hexachiral and tetrachiral honeycombs. Compos. Sci. Technol. 70, 1049–1056 (2010)CrossRefGoogle Scholar
  12. 12.
    Alderson, A., Alderson, K.L., Chirima, G., et al.: The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs. Compos. Sci. Technol. 70, 1034–1041 (2010)CrossRefGoogle Scholar
  13. 13.
    Lorato, P., Innocenti, F., Scarpa, A., et al.: The transverse elastic properties of chiral honeycombs. Compos. Sci. Technol. 70, 1057–1063 (2010)CrossRefGoogle Scholar
  14. 14.
    Cicala, G., Recca, G., Oliveri, L., et al.: Hexachiral truss-core with twisted hemp yarns: out-of-plane shear properties. Compos. Struct. 94, 3556–3562 (2012)CrossRefGoogle Scholar
  15. 15.
    Chen, Y., Scarpa, F., Liu, Y., et al.: Elasticity of anti-tetrachiral anisotropic lattices. Int. J. Solids Struct. 50, 996–1004 (2013)CrossRefGoogle Scholar
  16. 16.
    Bacigalupo, A., Gambarotta, L.: Homogenization of periodic hexa- and tetrachiral cellular solids. Compos. Struct. 116, 461–476 (2014)CrossRefGoogle Scholar
  17. 17.
    Mizzi, L., Attard, D., Gatt, R., et al.: Influence of translational disorder on the mechanical properties of hexachiral honeycomb systems. Compos. B 80, 84–91 (2015)CrossRefGoogle Scholar
  18. 18.
    Scarpa, F., Hassan, M.R., Ruzzenze, M.: Modeling and testing of shape memory alloy chiral honeycomb structure. In: Proceeding of SPIE 6170, Smart Structures and Materials 2006: Active Materials: Behavior and Mechanics (2006)Google Scholar
  19. 19.
    Scarpa, F., Blain, S., Lew, T., et al.: Elastic buckling of hexagonal chiral cell honeycombs. Compos. A 38, 280–289 (2007)CrossRefGoogle Scholar
  20. 20.
    Gaspar, N., Ren, X.J., Smith, C.W., et al.: Novel honeycombs with auxetic behaviour. Acta Mater. 53, 2439–2445 (2005)CrossRefGoogle Scholar
  21. 21.
    Zhou, J., Sheng, M., Zhang, A.: Equivalent elastic modulus of the honeycomb core based on FEM model. Mech. Strength 37, 488–492 (2015)Google Scholar
  22. 22.
    Joshi, H.R.: FE analysis of effective mechanical properties, vibration and acoustic performance of auxetic chiral core sandwich structures. [Ph.D. Thesis], Clemson University, USA (2013)Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • X. W. Su
    • 1
    Email author
  • D. M. Zhu
    • 2
  • C. Zheng
    • 2
  • M. M. Tomovic
    • 3
  1. 1.School of TechnologyBeijing Forestry UniversityBeijingChina
  2. 2.School of Mechanical EngineeringUniversity of Science and Technology BeijingBeijingChina
  3. 3.Batten College of Engineering and TechnologyOld Dominion UniversityNorfolkUSA

Personalised recommendations