Acta Mechanica Sinica

, Volume 35, Issue 1, pp 78–87 | Cite as

Constitutive parameters identification of thermal barrier coatings using the virtual fields method

  • Mengmeng Zhou
  • Huimin XieEmail author
  • Luming Li
Research Paper


Thermal barrier coatings (TBCs) are widely applied in thermal components to protect metallic components. Owing to the complex layered structure of TBCs and difficult preparation of coating, the mechanical characterization of TBCs should be of primary importance. With regard to TBCs, this study deals with the constitutive parameters identification of bi-material. Considering the complex construction and boundary of bi material, the virtual fields method (VFM) was employed in this study. A methodology based on the optimized virtual fields method combined with moiré interferometry was proposed for the constitutive parameters identification of bi-material. The feasibility of this method is verified using simulated deformation fields of a two-layer material subjected to three point bending loading. As an application, the deformation fields of the TBC specimens were measured by moiré interferometry. Then, the mechanical parameters of the coating were identified by the proposed method. The identification results indicate that Young’s modulus of the TBC top coating is 89.91  GPa, and its Poisson’s ratio is 0.23.


Virtual Fields Method Thermal barrier coatings Mechanical parameters identification Moiré interferometry 



This work is financially supported by the National Key Research and Development Procedure of China (Grant 2017YFB1103900). Authors are also grateful to the financial support from the National Natural Science Foundation of China (Grants 11672153, 11232008, 11227801).


  1. 1.
    Zhang, X., Zhong, Y.L., Zhang, X.W.: Investigation of Nanomechanical and Aging Properties of Scratch-Resistant coatings on Polycarbonate through Nanoindentation. Adv. Mater. Res. 704220 (2013)Google Scholar
  2. 2.
    Beghini, M., Bertini, L., Frendo, F.: Measurement of coatings’ elastic properties by mechanical methods: part 1. Consideration on experimental errors. Exp. Mech. 41(1), 293–304 (2001)CrossRefGoogle Scholar
  3. 3.
    Bao, Y.W., Zhou, Y.C., Bu, X.X.: Evaluating elastic modulus and strength of hard coatings by relative method. Mater. Sci. Eng. A Struct. Mater. 458(1), 268–274 (2007)CrossRefGoogle Scholar
  4. 4.
    Eberl, C., Gianola, D.S., Hemker, K.J.: Mechanical characterization of coatings using microbeam bending and digital image correlation techniques. Exp. Mech. 50(1), 85–97 (2010)CrossRefGoogle Scholar
  5. 5.
    Zhou, T., Nie, P.L., Lv, H.P.: Assessment of elastic properties of coatings by three-point bending and nanoindentation. J. Coat. Technol. Res. 8(3), 355–361 (2011)CrossRefGoogle Scholar
  6. 6.
    Avril, S., Bonnet, M., Bretelle, A.S.: Overview of identification methods of mechanical parameters based on Full-field measurements. Exp. Mech. 48, 381–402 (2008)CrossRefGoogle Scholar
  7. 7.
    Cottin, N., Felgenhauer, H.P., Natke, H.G.: On the parameter identification of elastomechanical systems using input and ouput residuals. Ingenieur-Archiv 54, 378–387 (1984)CrossRefzbMATHGoogle Scholar
  8. 8.
    Lecompte, D., Smits, A., Sol, H., et al.: Mixed numerical–experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens. Int. J. Solids Struct. 44, 1643–1656 (2007)CrossRefGoogle Scholar
  9. 9.
    Avril, S., Grédiac, M., Pierron, F.: Sensitivity of the virtual fields method to noisy data. Comput. Mech. 34, 439–452 (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Pierron, F., Grédiac, M.: The virtual fields method. Springer, New York (2012)CrossRefzbMATHGoogle Scholar
  11. 11.
    Grédiac, M., Toussaint, E., Pierron, F.: Special virtual fields for the direct determination of material parameters with the virtual fields method. 1—Principle and definition. Int. J. Solids Struct. 39, 2691–2705 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Grediac, M.: Principe des travaux virtuels et identification/Principle of virtual works and identification. Comptes Rendus de l’Academie des Sciences 309–II, 1–5 (1989)zbMATHGoogle Scholar
  13. 13.
    Jiang, L.B., Guo, B.Q., Xie, H.M.: Identification of the elastic stiffness of composites using the virtual fields method and digital image correlation. Acta Mech. Sin. 31(2), 173–180 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Pierron, F.: Saint-Venant effects in the Iosipescu specimen. J. Compos Mater. 32(26), 1986–2015 (1998)CrossRefGoogle Scholar
  15. 15.
    Sutton, M.A., Yan, J.H., Avril, S., et al.: Identification of heterogeneous constitutive parameters in awelded specimen: uniform stressand virtual fields methods for material property estimation. Exp. Mech. 48(4), 451–64 (2008)CrossRefGoogle Scholar
  16. 16.
    Le Louëdec, G., Pierron, F., Sutton, M.A., et al.: Identification of the local elasto-plastic behavior of FSW welds using the Virtual Fields Method. Exp. Mech. 53, 849–859 (2013)CrossRefGoogle Scholar
  17. 17.
    Cao, Q.K., Xie, H.M.: Characterization for elastic constants of Fused Deposition Modelling-fabricated materials based on the Virtual Fields Method and Digital Image Correlation. Acta Mech. Sin. 33(6), 1075–1083 (2017)CrossRefGoogle Scholar
  18. 18.
    Bruno, L.: Mechanical characterization of composite materials by optical techniques: a review. Opt. Lasers Eng. 104, 192–203 (2018)CrossRefGoogle Scholar
  19. 19.
    Nguyen, T.T., Huntley, J.M., Ashcroft, I.A., et al.: A Fourier-series-based virtual fields method for the identification of three-dimensional stiffness distributions and its application to incompressible materials. Strain 53, e12229 (2017)CrossRefGoogle Scholar
  20. 20.
    Marek, A., Davis, F.M., Pierron, F.: Sensitivity-based virtual fields for the non-linear virtual fields method. Comput. Mech. (2017). MathSciNetzbMATHGoogle Scholar
  21. 21.
    Hao, W., Zhang, Y., Yuan, Y.: Eigenfunction virtual fields method for thermo-mechanical parameters identification of composite materials. Polym. Test. 50(2016), 224–234 (2016)CrossRefGoogle Scholar
  22. 22.
    Toussaint, E., Grédiac, M., Pierron, F.: The virtual fields method with piecewise virtual fields. Int. J. Mech. Sci. 48, 256–264 (2006)CrossRefzbMATHGoogle Scholar
  23. 23.
    Grédiac, M., Pierron, F.: Identification of the orthotropic elastic stiffnesses of composites with the virtual fields method: sensitivity study and experimental validation. Strain 43, 250–259 (2007)CrossRefGoogle Scholar
  24. 24.
    Grédiac, M., Pierron, F.: Numerical issues in the virtual fields method. Int. J. Numer. Methods Eng. 59, 1287–1312 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Syed-Muhammad, K., Toussaint, E., Grédiac, M.: Optimization of a mechanical test on composite plates with the Virtual Fields Method. Struct. Multidiscip. Optim. 38, 71–82 (2009)CrossRefGoogle Scholar
  26. 26.
    Rossi, M., Pierron, F.: On the use of simulated experiments in designing tests for material characterization from full-field measurements. Int. J. Solids Struct. 49, 420–435 (2012)CrossRefGoogle Scholar
  27. 27.
    Gu, X., Pierron, F.: Towards the design of a new standard for composite stiffness identification. Compos. Part A Appl. Sci. Manuf. 91, 448–460 (2016)CrossRefGoogle Scholar
  28. 28.
    Syed-Muhammad, K., Toussaint, E., Grédiac, M.: Characterization of composite plates using the virtual fields method with optimized loading conditions. Compos. Struct. 85, 70–82 (2008)CrossRefGoogle Scholar
  29. 29.
    Zhou, M.M., Xie, H.M., Wu, L.F.: Virtual fields method coupled with moiré interferometry: special considerations and application. Opt. Lasers Eng. 87, 214–222 (2016)CrossRefGoogle Scholar
  30. 30.

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Aerospace EngineeringTsinghua UniversityBeijingChina

Personalised recommendations