Bending of Euler–Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach

Research Paper

Abstract

Eringen’s nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler–Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.

Keywords

Eringen’s nonlocal theory Stress-driven model Strain-driven model Euler–Bernoulli beam Numerical approach Paradox

References

1. 1.
Peng, X.L., Li, X.F., Tang, G.J.: Effect of scale parameter on the deflection of a nonlocal beam and application to energy release rate of a crack. ZAMM. Z. Angew. Math. Mech. 95, 1428–1438 (2015)
2. 2.
Ansari, R., Gholami, R., Rouhi, H.: Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic timoshenko nanobeams based upon the nonlocal elasticity theory. Compos. Struct. 126, 216–226 (2015)
3. 3.
Cajic, M., Karlicic, D., Lazarevic, M.: Nonlocal vibration of a fractional order viscoelastic nanobeam with attached nanoparticle. Theor. Appl. Mech. 42, 167–190 (2015)
4. 4.
Yan, Z., Wei, C., Zhang, C.: Band structures of transverse waves in nanoscale multilayered phononic crystals with nonlocal interface imperfections by using the radial basis function method. Acta Mech. Sin. 33, 415–428 (2017)
5. 5.
Ansari, R., Faraji Oskouie, M., Sadeghi, F.: Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory. Physica E 74, 318–327 (2015)
6. 6.
Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M.: A nonlinear strain gradient beam formulation. Int. J. Eng. Sci. 49, 1256–1267 (2011)
7. 7.
Vatankhah, R., Kahrobaiyan, M.H., Alasti, A.: Nonlinear forced vibration strain gradient microbeams. Appl. Math. Model. 37, 8363–8382 (2013)
8. 8.
Al-Basyouni, K.S., Tounsi, A., Mahmoud, S.R.: Size Dependent Bending and Vibration Analysis of Functionally Graded Micro Beams Based on Modified Couple Stress Theory and Neutral Surface Position. Compos. Struct. 125, 621–630 (2015)
9. 9.
Mohammadi, H., Mahzoon, M.: Investigating thermal effects in nonlinear buckling analysis of micro beams using modified strain gradient theory. IJST Trans. Mech. Eng. 38, 303–320 (2014)Google Scholar
10. 10.
Ansari, R., Pourashraf, T., Gholami, R.: An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory. Thin Walled Struct. 93, 169–176 (2015)
11. 11.
Chiu, M.S., Chen, T.: Bending and Resonance Behavior of Nanowires Based on Timoshenko Beam Theory with High-Order Surface Stress Effects. Physica E 54, 149–156 (2013)
12. 12.
Ansari, R., Gholami, R., Norouzzadeh, A.: Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model. Acta Mech. Sin. 31, 708–719 (2015)
13. 13.
Amirian, B., Hosseini-Ara, R., Moosavi, H.: Surface and thermal effects on vibration of embedded alumina nanobeams based on novel Timoshenko beam model. Appl. Math. Mech. 35, 875–886 (2014)
14. 14.
Ansari, R., Mohammdi, V., Faghih Shojaei, M.: Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory. Eur. J. Mech. A Solids 45, 143–152 (2014)
15. 15.
Hosseini-Hashemi, S., Nazemnezhad, R.: An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos. Part B 52, 199–206 (2013)
16. 16.
Ansari, R., Hosseini, K., Darvizeh, A.: A sixth-order compact finite difference method for non-classical vibration analysis of nanobeams including surface stress effects. Appl. Math. Comput. 219, 4977–4991 (2013)
17. 17.
Kröner, E.: Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3, 731–742 (1967)
18. 18.
Krumhansl, J.: Some considerations of the relation between solid state physics and generalized continuum mechanics. In: Kröner, E. (ed.) Mechanics of Generalized Continua, IUTAM Symposia, Springer, Berlin, 298–311 (1968)Google Scholar
19. 19.
Kunin, I.A.: The theory of elastic media with microstructure and the theory of dislocations. In: Mechanics of Generalized Continua, IUTAM symposia, Springer, Berlin, 321–329 (1968)Google Scholar
20. 20.
Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)
21. 21.
Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)
22. 22.
Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)
23. 23.
Arash, B., Wang, Q.: A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012)
24. 24.
Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech. Sin. 32, 83–100 (2016)
25. 25.
Eltaher, M.A., Khater, M.E., Emam, S.A.: A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Model. 40, 4109–4128 (2016)
26. 26.
Challamel, N., Wang, C.: The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology 19, 345703 (2008)
27. 27.
Khodabakhshi, P., Reddy, J.N.: A unified integro-differential nonlocal model. Int. J. Eng. Sci. 95, 60–75 (2015)
28. 28.
Challamel, N., Zhang, Z., Wang, C.M.: On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach. Arch. Appl. Mech. 84, 1275–1292 (2014)
29. 29.
Reddy, J.N., El-Borgi, S.: Eringen’s nonlocal theories of beam accounting for moderate rotations. Int. J. Eng. Sci. 82, 159–77 (2014)
30. 30.
Zhang, Y.: Frequency spectra of nonlocal Timoshenko beams and an effective method of determining nonlocal effect. Int. J. Mech. Sci. 128–129, 572–582 (2017)
31. 31.
Fernández-Sáez, J., Zaera, R., Loya, J.A.: Bending of Euler-Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int. J. Eng. Sci. 99, 107–116 (2016)
32. 32.
Tuna, M., Kirca, M.: Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams. Int. J. Eng. Sci. 105, 80–92 (2016)
33. 33.
Norouzzadeh, A., Ansari, R.: Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity. Physica E 88, 194–200 (2017)
34. 34.
Norouzzadeh, A., Ansari, R., Rouhi, H.: Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: an isogeometric approach. Appl. Phys. A 123, 330 (2017)
35. 35.
Zhu, X., Li, L.: Twisting statics of functionally graded nanotubes using Eringen’s nonlocal integral model. Compos. Struct. 78, 87–96 (2017)
36. 36.
Koutsoumaris, C.Chr., Eptaimeros, K.G., Tsamasphyros, G.J.: A different approach to Eringen’s nonlocal integral stress model with applications for beams. Int. J. Solids Struct. 112, 222–238 (2017)Google Scholar
37. 37.
Shaat, M.: An iterative-based nonlocal elasticity for Kirchhoff plates. Int. J. Mech. Sci. 90, 162–170 (2015)
38. 38.
Shaat, M., Abdelkefi, A.: New insights on the applicability of Eringen’s nonlocal theory. Int. J. Mech. Sci. 121, 67–75 (2017)
39. 39.
Shaat, M.: A general nonlocal theory and its approximations for slowly varying acoustic waves. Int. J. Mech. Sci. 130, 52–63 (2017)
40. 40.
Romano, G., Barretta, R., Diaco, M.: Constitutive boundary conditions and paradoxes in nonlocal elastic nano-beams. Int. J. Mech. Sci. 121, 151–156 (2017)
41. 41.
Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)
42. 42.
Romano, G., Barretta, R.: Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27 (2017)
43. 43.
Romano, G., Barretta, R.: Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos. Part B 114, 184–188 (2017)
44. 44.
Romano, G., Barretta, R., Diaco, M.: On nonlocal integral models for elastic nano-beams. Int. J. Mech. Sci. 131–132, 490–499 (2017)
45. 45.
Barretta, R., Feo, L., Luciano, R., Marotti de Sciarra, F., Penna, R.: Nano-beams under torsion: a stress-driven nonlocal approach. PSU Res. Rev. 1, 164–169 (2017)
46. 46.
Apuzzo, A., Barretta, R., Luciano, R., et al.: Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model. Compos. Part B Eng. 123, 105–111 (2017)