Advertisement

Acta Mechanica Sinica

, Volume 34, Issue 4, pp 623–631 | Cite as

An efficient unstructured WENO method for supersonic reactive flows

  • Wen-Geng Zhao
  • Hong-Wei Zheng
  • Feng-Jun Liu
  • Xiao-Tian Shi
  • Jun Gao
  • Ning Hu
  • Meng Lv
  • Si-Cong Chen
  • Hong-Da Zhao
Research Paper
  • 74 Downloads

Abstract

An efficient high-order numerical method for supersonic reactive flows is proposed in this article. The reactive source term and convection term are solved separately by splitting scheme. In the reaction step, an adaptive time-step method is presented, which can improve the efficiency greatly. In the convection step, a third-order accurate weighted essentially non-oscillatory (WENO) method is adopted to reconstruct the solution in the unstructured grids. Numerical results show that our new method can capture the correct propagation speed of the detonation wave exactly even in coarse grids, while high order accuracy can be achieved in the smooth region. In addition, the proposed adaptive splitting method can reduce the computational cost greatly compared with the traditional splitting method.

Keywords

Supersonic reactive flows Adaptive splitting scheme Unstructured grids WENO reconstruction 

Notes

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Grants 51476152, 11302213, and 11572336). The authors wish to thank Jun Meng, Li Liu, Jun Peng, Shengping Liu and Guangli Li for helpful discussions. Special thank goes to Prof. Yiqing Shen and Prof. Xinliang Li of the Institute of Mechanics CAS for their suggestions and help.

References

  1. 1.
    Roy, G.D.: Pulse detonation propulsion: challenges, current status, and future perspective. Prog. Energy Combust. 30, 545–672 (2004)CrossRefGoogle Scholar
  2. 2.
    Geßner, T.: Dynamic mesh adaption for supersonic combustion waves modeled with detailed reaction mechanisms. [Ph.D. Thesis], Technical University Dresden, German (2001)Google Scholar
  3. 3.
    Fedkiw, R.P., Merriman, B., Osher, S.: High accuracy numerical methods for thermally perfect gas flows with chemistry. J. Comput. Phys. 132, 175–190 (1997)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Togashi, F., Löhner, R., Tsuboi, N.: Numerical simulation of H\(_2\)/air detonation using unstructured mesh. Shock Waves 192, 151–162 (2009)CrossRefMATHGoogle Scholar
  5. 5.
    Ju, Y.: Recent progress and challenges in fundamental combustion research. Adv. Mech. 44, 1142–1157 (2014)Google Scholar
  6. 6.
    Chapman, D.L.V.I.: On the rate of explosion in gases. Lond. Edinb. Dublin Philos. Mag. J. Sci. 47, 90–104 (1899)CrossRefMATHGoogle Scholar
  7. 7.
    Jouguet, E.: On the propagation of chemical reactions in gases. J. Math. Pureset Appl. 1, 347–425 (1905)MATHGoogle Scholar
  8. 8.
    Zeldovich, Y.B.: On the theory of the propagation of detonation in gaseous systems. Tech. Memos. Nat. Adv. Comm. Aeronaut. 1950, 1261 (1950)MathSciNetGoogle Scholar
  9. 9.
    Von Neuman, J.: Theory of Detonation Waves. Institute for Advanced Study, Princeton (1942)Google Scholar
  10. 10.
    Döring, W.: On detonation processes in gases. Ann. Phys. 43, 421–436 (1943)CrossRefGoogle Scholar
  11. 11.
    Bao, W., Jin, S.: The random projection method for hyperbolic conservation laws with stiff reaction terms. J. Comput. Phys. 163, 216–248 (2000)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Bao, W., Jin, S.: The random projection method for stiff detonation capturing. SIAM J. Sci. Comput. 23, 1000–1026 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bao, W., Jin, S.: The random projection method for stiff multispecies detonation capturing. J. Comput. Phys. 178, 37–57 (2002)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Helzel, C., Leveque, R.J., Warnecke, G.: A modified fractional step method for the accurate approximation of detonation waves. SIAM J. Sci. Comput. 22, 1489–1510 (2000)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Tosatto, L., Vigevano, L.: Numerical solution of under-resolved detonations. J. Comput. Phys. 227, 2317–2343 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Dumbser, M., Enaux, C., Toro, E.F.: Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J. Comput. Phys. 227, 3971–4001 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Wang, W., Shu, C.W., Yee, H.C., et al.: High order finite difference methods with subcell resolution for advection equations with stiff source terms. J. Comput. Phys. 231, 190–214 (2012)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Zhang, B., Liu, H., Chen, F.: The equilibrium state method for hyperbolic conservation laws with stiff reaction terms. J. Comput. Phys. 263, 151–176 (2014)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Taki, S., Fujiwara, T.: Numerical analysis of two-dimensional non-steady detonations. AIAA J. 16, 73–77 (1978)CrossRefGoogle Scholar
  20. 20.
    Lefebvre, M.H., Oran, E.S., Kailasanath, K.: Computations of Detonation Structure: The Influence of Model Input Parameters. Naval Research Lab, Washington, DC (1992)Google Scholar
  21. 21.
    Sichel, M., Tonello, N.A., Oran, E.S., et al.: A two-step kinetics model for numerical simulation of explosions and detonations in H\(_2\)–O\(_2\) mixtures. R. Soc. 458, 49–82 (2002)CrossRefMATHGoogle Scholar
  22. 22.
    Colella, P., Majda, A., Roytburd, V.: Theoretical and numerical structure for reacting shock waves. SIAM J. Sci. Comput. 7, 1059–1080 (1986)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    LeVeque, R.J., Yee, H.C.: A study of numerical methods for hyperbolic conservation laws with stiff source terms. J. Comput. Phys. 86, 187–210 (1990)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Bussing, T.R.A., Murman, E.M.: Finite-volume method for the calculation of compressible chemically reacting flows. AIAA J. 26, 1070–1078 (1988)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Gnoffo, P.A.: An upwind-biased, point-implicit relaxation algorithm for viscous, compressible perfect-gas flows. NASA Tech. Rep. 90, 17–42 (1990)Google Scholar
  26. 26.
    Zhong X.: New high-order semi-implicit Runge–Kutta schemes for computing transient nonequilibrium hypersonic flow. In: 30th Thermophysics Conference, New York, August 4–14 (1995)Google Scholar
  27. 27.
    Oran, E.S., Weber, J.W., Stefaniw, E.I., et al.: A numerical study of a two-dimensional H\(_2\)–O\(_2\)–Ar detonation using a detailed chemical reaction model. Combust. Flame 113, 147–163 (1998)CrossRefGoogle Scholar
  28. 28.
    Xiao, X., Edwards, J.R., Hassan, H.A., et al.: Inflow boundary conditions for hybrid large eddy/Reynolds averaged Navier–Stokes simulations. AIAA J. 41, 1481–1489 (2003)CrossRefGoogle Scholar
  29. 29.
    Shen, Y., Zha, G.: Application of low diffusion E-CUSP scheme with high order WENO scheme for chemical reacting flows. In: The 40th Fluid Dynamics Conference and Exhibit, Chicago, June 28–30 (2010)Google Scholar
  30. 30.
    Taylor, B.D., Kessler, D.A., Gamezo, V.N., et al.: Numerical simulations of hydrogen detonations with detailed chemical kinetics. Proc. Combust. Inst. 34, 2009–2016 (2013)CrossRefGoogle Scholar
  31. 31.
    Billet, G., Ryan, J., Borrel, M.: A Runge Kutta discontinuous Galerkin approach to solve reactive flows on conforming hybrid grids: the parabolic and source operators. Comput. Fluids 95, 98–115 (2014)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Lv, Y., Ihme, M.: Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion. J. Comput. Phys. 270, 105–137 (2014)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Dumbser, M., Castro, M., Parés, C., et al.: ADER schemes on unstructured meshes for non-conservative hyperbolic systems: applications to geophysical flows. Comput. Fluids 38, 1731–1748 (2009)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Dumbser, M., Zanotti, O.: Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations. J. Comput. Phys. 228, 6991–7006 (2009)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Titarev, V.A., Tsoutsanis, P., Drikakis, D.: WENO schemes for mixed-element unstructured meshes. Commun. Comput. Phys. 8, 585–609 (2010)MathSciNetMATHGoogle Scholar
  36. 36.
    Zhang, Y.T., Shu, C.W.: Third order WENO scheme on three dimensional tetrahedral meshes. Commun. Comput. Phys. 5, 836–848 (2009)MathSciNetMATHGoogle Scholar
  37. 37.
    Zhang, Y., Shu, C.: High-order WENO Sschemes for Hamilton–Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24, 1005–1030 (2003)CrossRefMATHGoogle Scholar
  38. 38.
    Togashi, F., Löhner, R., Tsuboi, N.: Numerical simulation of H\(_2\)/air detonation using unstructured mesh. Shock Waves 19, 151–162 (2009)CrossRefMATHGoogle Scholar
  39. 39.
    Wang, Z.J.: High-order methods for the Euler and Navier–Stokes equations on unstructured grids. Prog. Aerosp. Sci. 43, 1–41 (2007)CrossRefGoogle Scholar
  40. 40.
    Ekaterinaris, J.A.: High-order accurate, low numerical diffusion methods for aerodynamics. Prog. Aerosp. Sci. 41, 192–300 (2005)CrossRefGoogle Scholar
  41. 41.
    Harten, A., Engquist, B., Osher, S., et al.: Uniformly high order accurate essentially non-oscillatory schemesIII. J. Comput. Phys. 71, 231–303 (1987)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Cockburn, B., Karniadakis, G.E., Shu, C.W.: The Development of Discontinuous Galerkin Methods. Springer, Berlin (2000)CrossRefMATHGoogle Scholar
  45. 45.
    Wang, Z.J.: Spectral (finite) volume method for conservation laws on unstructured grids basic formulation. J. Comput. Phys. 178, 210–251 (2002)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Zheng, H., Zhao, W.G.: An improved unstructured WENO method for compressible multi-fluids flow. In. J. Numer. Methods Fluids 82, 113–129 (2016)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Stull, D., Prophet, H.: JANAF Thermo Chemical Tables, 2nd edn. NSRDS-NBS37, Washington (1971)Google Scholar
  48. 48.
    Kailasanath, K., Oran, E.S., Boris, J.P.: Determination of detonation cell size and the role of transverse waves in two-dimensional detonations. Combust. Flame 61, 199–209 (1985)CrossRefGoogle Scholar
  49. 49.
    Hu, Z., Mu, Q., Zhang, D., et al.: Numerical simulation of gaseous detonation wave propagation through bends with a detailed chemical reaction model. Chin. J. Comput. Phys. 21, 408–414 (2004)Google Scholar
  50. 50.
    Lv, Y., Ihme, M.: Development of discontinuous Galerkin method for detonation and supersonic combustion. In: 51st AIAA Aerospace Sciences Meeting, Grapevine, January 7–10 (2013)Google Scholar
  51. 51.
    Deiterding, R., Bader, G.: High-Resolution Simulation of Detonations with Detailed Chemistry. In: Analysis and Numeric for Conservation Laws, Berlin Heidelberg, May 4–12 (2005)Google Scholar
  52. 52.
    Eckett, C.A.: Numerical and Analytical Studies of the Dynamics of Gaseous Detonations [Ph.D. Thesis], California Institute of Technology, America (2000)Google Scholar
  53. 53.
    Deiterding, R.: Parallel Adaptive Simulation of Multi-Dimensional Detonation Structures. [Ph.D. Thesis], Branderburg University of Technology Cottbus, German (2003)Google Scholar
  54. 54.
    Li, J., Zhao, Z., Kazakov, A., et al.: An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36, 566–575 (2004)CrossRefGoogle Scholar
  55. 55.
    Stull, D.R., Prophet, H.: JANAF thermo chemical tables. Technical report, U. S. Department of Commerce (1971)Google Scholar
  56. 56.
    Hu, C., Shu, C.W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1971)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Dumbser, M., Käser, M., Titarev, V.A., et al.: Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. J. Comput. Phys. 226, 204–243 (2007)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Ivan, L.: High-order central ENO finite-volume scheme for hyperbolic conservation laws on three-dimensional cubed-sphere grids. J. Comput. Phys. 12, 157–182 (2015)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Ivan, L., Clinton, P.T.: High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous flows. J. Comput. Phys. 11, 830–862 (2014)Google Scholar
  60. 60.
    Billet, G., Ryan, J., Borrel, M.: A Runge Kutta discontinuous Galerkin approach to solve reactive flows on conforming hybrid grids: the parabolic and source operators. Comput. Fluids 1, 98–115 (2014)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Billet, G., Ryan, J., Borrel, M.: A Runge Kutta discontinuous Galerkin approach to solve reactive flows on conforming hybrid grids: the parabolic and source operators. Comput. Fluids 23, 98–115 (2014)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Ren, Z.: Dynamic adaptive chemistry with operator splitting schemes for reactive flow simulations. J. Comput. Phys. 263, 19–36 (2014)CrossRefMATHGoogle Scholar
  63. 63.
    Cai, X., Liang, J., Lin, Z., et al.: Adaptive mesh refinement-based numerical simulation of detonation initiation in supersonic combustible mixtures using a hot jet. J. Aerosp. Eng. 28, 1–15 (2015)Google Scholar
  64. 64.
    Florian, E., Klaus, G., Sattelmayer, T.: Numerical simulation of the deflagration to detonation transition in inhomogeneous mixtures. J. Combust. 31, 1–15 (2014)Google Scholar
  65. 65.
    Zhou, R., Wu, D., Wang, J.: Progress of continuously rotating detonation engines. Chin. J. Aeronaut. 29, 15–29 (2016)CrossRefGoogle Scholar
  66. 66.
    Qing, Y., Zhang, X.: Discontinuous Galerkin immersed finite element methods for parabolic interface problems. J. Comput. Appl. Math. 1, 127–139 (2016)MathSciNetMATHGoogle Scholar
  67. 67.
    Assyr, A., Huber, M.E.: Discontinuous Galerkin finite element heterogeneous multiscale method for advection–diffusion problems with multiplescales. Numer. Math. 126, 589–633 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wen-Geng Zhao
    • 1
  • Hong-Wei Zheng
    • 2
    • 3
  • Feng-Jun Liu
    • 4
  • Xiao-Tian Shi
    • 1
  • Jun Gao
    • 1
  • Ning Hu
    • 1
  • Meng Lv
    • 1
  • Si-Cong Chen
    • 1
  • Hong-Da Zhao
    • 5
  1. 1.China Academy of Aerospace and AerodynamicsBeijingChina
  2. 2.LHD, Institute of MechanicsCASBeijingChina
  3. 3.School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijingChina
  4. 4.AECC Beijing Institute of Aeronautical MaterialsBeijingChina
  5. 5.Science and Technology on Scramjet LaboratoryBeijing Power Machinery Research InstituteBeijingChina

Personalised recommendations