Modified smoothed particle hydrodynamics approach for modelling dynamic contact angle hysteresis

  • Yanyao Bao
  • Ling Li
  • Luming Shen
  • Chengwang Lei
  • Yixiang GanEmail author
Research Paper


Dynamic wetting plays an important role in the physics of multiphase flow, and has a significant influence on many industrial and geotechnical applications. In this work, a modified smoothed particle hydrodynamics (SPH) model is employed to simulate surface tension, contact angle and dynamic wetting effects at meso-scale. The wetting and dewetting phenomena are simulated in a capillary tube, where the liquid particles are raised or withdrawn by a shifting substrate. The SPH model is modified by introducing a newly developed viscous force formulation at the liquid–solid interface to reproduce the rate-dependent behaviour of the moving contact line. Dynamic contact angle simulations with the interfacial viscous force are conducted to verify the effectiveness and accuracy of this new formulation. In addition, the influence of interfacial viscous forces with different magnitude on the contact angle dynamics is examined by empirical power-law correlations; the derived constants suggest that the dynamic contact angle changes monotonically with the interfacial viscous force. The simulation results are consistent with experimental observations and theoretical predictions, implying that the interfacial viscous force can be associated with the slip length of flow and the microscopic surface roughness. This work demonstrates that the modified SPH model can successfully account for the rate-dependent effects of a moving contact line, and can be used for realistic multiphase flow simulations under dynamic conditions.


Smoothed particle hydrodynamics Contact angle dynamics Capillary number Interfacial viscous force 



This work was supported by the Australian Research Council (Grant DP170102886) and the University of Sydney SOAR Fellowship. This research was undertaken with the assistance of the HPC service at University of Sydney.


  1. 1.
    Abriola, L.M., Pinder, G.F.: A multiphase approach to the modeling of porous media contamination by organic compounds: 1. Equation development. Water Resour. Res. 21, 11–18 (1985)CrossRefGoogle Scholar
  2. 2.
    Ran, Q.Q., Gu, X.Y., Li, S.L.: A coupled model for multiphase fluid flow and sedimentation deformation in oil reservoir and its numerical simulation. Acta Mech. Sin. 13, 264–272 (1997)CrossRefGoogle Scholar
  3. 3.
    Bandara, U.C., Palmer, B.J., Tartakovsky, A.M.: Effect of wettability alteration on long-term behavior of fluids in subsurface. Comput. Part. Mech. 3, 277–289 (2016)CrossRefGoogle Scholar
  4. 4.
    Gan, Y., Maggi, F., Buscarnera, G., et al.: A particle-water based model for water retention hysteresis. Geotech. Lett. 3, 152–161 (2013)CrossRefGoogle Scholar
  5. 5.
    Flores-Johnson, E.A., Wang, S., Maggi, F., et al.: Discrete element simulation of dynamic behaviour of partially saturated sand. Int. J. Mech. Mater. Des. 12, 495–507 (2016)CrossRefGoogle Scholar
  6. 6.
    Li, S., Liu, M., Hanaor, D., et al.: Dynamics of viscous entrapped saturated zones in partially wetted porous media. Transp. Porous Media 125, 193–210 (2018)CrossRefGoogle Scholar
  7. 7.
    Kiwi-Minsker, L., Renken, A.: Microstructured reactors for catalytic reactions. Catal. Today 110, 2–14 (2005)CrossRefGoogle Scholar
  8. 8.
    Schwartz, A.M., Tejada, S.B.: Studies of dynamic contact angles on solids. J. Colloid Interface Sci. 38, 359–375 (1972)CrossRefGoogle Scholar
  9. 9.
    Jiang, T.S., Soo-Gun, O.H., Slattery, J.C.: Correlation for dynamic contact angle. J. Colloid Interface Sci. 69, 74–77 (1979)CrossRefGoogle Scholar
  10. 10.
    Bracke, M., De Voeght, F., Joos, P.: The kinetics of wetting: the dynamic contact angle. Prog. Colloid Pol. Sci. 79, 142–149 (1989)CrossRefGoogle Scholar
  11. 11.
    Cox, R.G.: The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169–194 (1986)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hoffman, R.L.: A study of the advancing interface: II. Theoretical prediction of the dynamic contact angle in liquid–gas systems. J. Colloid Interface Sci. 94, 470–486 (1983)CrossRefGoogle Scholar
  13. 13.
    Raiskinmäki, P., Shakib-Manesh, A., Jäsberg, A., et al.: Lattice-Boltzmann simulation of capillary rise dynamics. J. Stat. Phys. 107, 143–158 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Koplik, J., Banavar, J.R., Willemsen, J.F.: Molecular dynamics of Poiseuille flow and moving contact lines. Phys. Rev. Lett. 60, 1282–1285 (1988)CrossRefGoogle Scholar
  15. 15.
    Huber, M., Keller, F., Säckel, W., et al.: On the physically based modeling of surface tension and moving contact lines with dynamic contact angles on the continuum scale. J. Comput. Phys. 310, 459–477 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lukyanov, A.V., Likhtman, A.E.: Dynamic contact angle at the nanoscale: a unified view. ACS Nano 10, 6045–6053 (2016)CrossRefGoogle Scholar
  17. 17.
    Tartakovsky, A.M., Panchenko, A.: Pairwise force smoothed particle hydrodynamics model for multiphase flow: surface tension and contact line dynamics. J. Comput. Phys. 305, 1119–1146 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Eral, H.B., Oh, J.M.: Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym. Sci. 291, 247–260 (2013)CrossRefGoogle Scholar
  19. 19.
    Rame, E.: The interpretation of dynamic contact angles measured by the Wilhelmy plate method. J. Colloid Interface Sci. 185, 245–251 (1997)CrossRefGoogle Scholar
  20. 20.
    Blake, T.D., Haynes, J.M.: Kinetics of liquid–liquid displacement. J. Colloid Interface Sci. 30, 421–423 (1969)CrossRefGoogle Scholar
  21. 21.
    Petrov, P., Petrov, I.: A combined molecular-hydrodynamic approach to wetting kinetics. Langmuir 8, 1762–1767 (1992)CrossRefGoogle Scholar
  22. 22.
    Elliott, G.E.P., Riddiford, A.C.: Dynamic contact angles: I. The effect of impressed motion. J. Colloid Interface Sci. 23, 389–398 (1967)CrossRefGoogle Scholar
  23. 23.
    Schäffer, E., Wong, P.Z.: Contact line dynamics near the pinning threshold: a capillary rise and fall experiment. Phys. Rev. E 61, 5257–5277 (2000)CrossRefGoogle Scholar
  24. 24.
    Shi, Z., Zhang, Y., Liu, M., et al.: Dynamic contact angle hysteresis in liquid bridges. Colloids Surf. A Physicochem. Eng. Asp. 555, 365–371 (2018)CrossRefGoogle Scholar
  25. 25.
    Kim, J.H., Rothstein, J.P.: Dynamic contact angle measurements of viscoelastic fluids. J. Nonnewton Fluid Mech. 225, 54–61 (2015)CrossRefGoogle Scholar
  26. 26.
    Seebergh, J.E., Berg, J.C.: Dynamic wetting in the low capillary number regime. Chem. Eng. Sci. 47, 4455–4464 (1992)CrossRefGoogle Scholar
  27. 27.
    Kordilla, J., Tartakovsky, A.M., Geyer, T.: A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces. Adv. Water Resour. 59, 1–14 (2013)CrossRefGoogle Scholar
  28. 28.
    Shigorina, E., Kordilla, J., Tartakovsky, A.M.: Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow. Phys. Rev. E 96, 033115 (2017)CrossRefGoogle Scholar
  29. 29.
    Meakin, P., Tartakovsky, A.M.: Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Rev. Geophys. 47, RG3002 (2009)CrossRefGoogle Scholar
  30. 30.
    Thompson, P.A., Robbins, M.O.: Simulations of contact-line motion: slip and the dynamic contact angle. Phys. Rev. Lett. 63, 766–769 (1989)CrossRefGoogle Scholar
  31. 31.
    Huang, P., Shen, L., Gan, Y., et al.: Coarse-grained modeling of multiphase interactions at microscale. J. Chem. Phys. 149, 124505 (2018)CrossRefGoogle Scholar
  32. 32.
    Dos Santos, L.O., Wolf, F.G., Philippi, P.C.: Dynamics of interface displacement in capillary flow. J. Stat. Phys. 121, 197–207 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Chibbaro, S., Biferale, L., Diotallevi, F., et al.: Capillary filling for multicomponent fluid using the pseudo-potential lattice Boltzmann method. Eur. Phys. J. Spec. Top. 171, 223–228 (2009)CrossRefGoogle Scholar
  34. 34.
    Xu, A., Shyy, W., Zhao, T.: Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries. Acta Mech. Sin. 33, 555–574 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Bertrand, E., Blake, T.D., De Coninck, J.: Influence of solid–liquid interactions on dynamic wetting: a molecular dynamics study. J. Phys. Condens. Matter 21, 464124 (2009)CrossRefGoogle Scholar
  37. 37.
    Benzi, R., Biferale, L., Sbragaglia, M., et al.: Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle. Phys. Rev. E 74, 021509 (2006)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Caiazzo, A.: Analysis of lattice Boltzmann nodes initialisation in moving boundary problems. Prog. Comput. Fluid Dyn. 8, 3–10 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Tartakovsky, A., Meakin, P.: Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys. Rev. E 72, 026301 (2005)CrossRefGoogle Scholar
  40. 40.
    Liu, M., Meakin, P., Huang, H.: Dissipative particle dynamics simulation of pore-scale multiphase fluid flow. Water. Resour. Res. 43, W04411 (2007)Google Scholar
  41. 41.
    Li, L., Shen, L., Nguyen, G.D., et al.: A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale. Comput. Mech. 62, 1071–1085 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Morris, J.P., Fox, P.J., Zhu, Y.: Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 214–226 (1997)CrossRefzbMATHGoogle Scholar
  43. 43.
    Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation San Diego, California, 209–217 (2007)Google Scholar
  44. 44.
    Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110, 399–406 (1994)CrossRefzbMATHGoogle Scholar
  45. 45.
    Breinlinger, T., Polfer, P., Hashibon, A., et al.: Surface tension and wetting effects with smoothed particle hydrodynamics. J. Comput. Phys. 243, 14–27 (2013)CrossRefzbMATHGoogle Scholar
  46. 46.
    Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)CrossRefGoogle Scholar
  47. 47.
    Liu, M.B., Liu, G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17, 25–76 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Meister, M., Burger, G., Rauch, W.: On the Reynolds number sensitivity of smoothed particle hydrodynamics. J. Hydraul. Res. 52, 824–835 (2014)CrossRefGoogle Scholar
  49. 49.
    Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Monaghan, J.J., Kajtar, J.B.: SPH particle boundary forces for arbitrary boundaries. Comput. Phys. Commun. 180, 1811–1820 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 448–475 (2003)CrossRefzbMATHGoogle Scholar
  52. 52.
    Feldman, J., Bonet, J.: Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems. Int. J. Numer. Methods Eng. 72, 295–324 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Wang, J., Chan, D.: Frictional contact algorithms in SPH for the simulation of soil–structure interaction. Int. J. Numer. Anal. Methods Geomech. 38, 747–770 (2014)CrossRefGoogle Scholar
  54. 54.
    Schnell, E.: Slippage of water over nonwettable surfaces. J. Appl. Phys. 27, 1149–1152 (1956)CrossRefGoogle Scholar
  55. 55.
    Churaev, N.V., Sobolev, V.D., Somov, A.N.: Slippage of liquids over lyophobic solid surfaces. J. Colloid Interface Sci. 97, 574–581 (1984)CrossRefGoogle Scholar
  56. 56.
    Cheng, J.T., Giordano, N.: Fluid flow through nanometer-scale channels. Phys. Rev. E 65, 031206 (2002)CrossRefGoogle Scholar
  57. 57.
    Choi, C.H., Westin, K.J.A., Breuer, K.S.: Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys. Fluids 15, 2897–2902 (2003)CrossRefzbMATHGoogle Scholar
  58. 58.
    Pit, R., Hervet, H., Leger, L.: Direct experimental evidence of slip in hexadecane: solid interfaces. Phys. Rev. Lett. 85, 980–983 (2000)CrossRefGoogle Scholar
  59. 59.
    Rothstein, J.P.: Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89–109 (2010)CrossRefGoogle Scholar
  60. 60.
    Majumder, M., Chopra, N., Andrews, R., et al.: Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438, 44–44 (2005)CrossRefGoogle Scholar
  61. 61.
    Lee, C., Kim, C.J.C.: Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. Langmuir 25, 12812–12818 (2009)CrossRefGoogle Scholar
  62. 62.
    Ramachandran, P.: A reproducible and high-performance framework for smoothed particle hydrodynamics. In: Proceedings of the 15th Python in Science Conference, pp. 127–135 (2016)Google Scholar
  63. 63.
    Liu, G.R., Liu, M.B.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, Singapore (2003)CrossRefzbMATHGoogle Scholar
  64. 64.
    Hocking, L.M.: A moving fluid interface on a rough surface. J. Fluid Mech. 76, 801–817 (1976)CrossRefzbMATHGoogle Scholar
  65. 65.
    Niavarani, A., Priezjev, N.V.: Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids. Phys. Rev. E 81, 011606 (2010)CrossRefGoogle Scholar
  66. 66.
    Thompson, P.A., Troian, S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389, 360–362 (1997)CrossRefGoogle Scholar
  67. 67.
    Karim, A.M., Rothstein, J.P., Kavehpour, H.P.: Experimental study of dynamic contact angles on rough hydrophobic surfaces. J. Colloid Interface Sci. 513, 658–665 (2018)CrossRefGoogle Scholar
  68. 68.
    Landau, L.D., Levich, B.: Dynamics of Curved Fronts. Academic, San Diego (1988)Google Scholar
  69. 69.
    Li, X., Fan, X., Askounis, A., et al.: An experimental study on dynamic pore wettability. Chem. Eng. Sci. 104, 988–997 (2013)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yanyao Bao
    • 1
  • Ling Li
    • 1
  • Luming Shen
    • 1
  • Chengwang Lei
    • 1
  • Yixiang Gan
    • 1
    Email author
  1. 1.School of Civil EngineeringUniversity of SydneySydneyAustralia

Personalised recommendations