Advertisement

Acta Mechanica Sinica

, Volume 35, Issue 2, pp 299–308 | Cite as

Nuclear mechanics during and after constricted migration

  • Yuntao Xia
  • Charlotte R. Pfeifer
  • Dennis E. DischerEmail author
Review Paper

Abstract

Cell migration through very narrow spaces in tissues has been seen in both physiological and pathological contexts. For example, immune cells squeeze through the vasculature and the extracellular matrix to reach wound or disease sites, and similarly, cancer cells crawl through interstices in tissues to invade tumor-free regions. The bulky and stiff nucleus of a cell is a barrier to such constricted migration—with smaller pores exponentially more difficult for passage. Cells must actively deform their nuclei to squeeze through constrictions, and this involves the stress-generating cytoskeleton. Here we review: (1) nuclear structures and morphological regulation, (2) proposed mechanisms that drive constricted migration, (3) short-term consequences such as nuclear envelope (NE) rupture and DNA damage during such process, (4) biophysical factors that facilitate NE rupture, and (5) long-term consequences such as genomic variation caused by repetitive NE rupture. Both experimental results and modeling are provided with the intention to better understand constricted migration.

Keywords

Constricted migration Nuclear envelope rupture DNA damage 

Notes

Acknowledgments

The authors in this study were supported by the National Institutes of Health National Cancer Institute under Physical Sciences Oncology Center Award U54 CA193417, National Heart Lung and Blood Institute Award R21 HL128187, the US–Israel Binational Science Foundation, and National Science Foundation grant agreement CMMI 15-48571. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health nor the National Science Foundation. The authors declare no competing financial interests.

References

  1. 1.
    Rustad, K.C., Gurtner, G.C.: Mesenchymal stem cells home to sites of injury and inflammation. Adv. Wound Care (New Rochelle) 1, 147–152 (2012)CrossRefGoogle Scholar
  2. 2.
    Luster, A.D., Alon, R., von Andrian, U.H.: Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol. 6, 1182–1190 (2005)CrossRefGoogle Scholar
  3. 3.
    Clark, A.G., Vignjevic, D.M.: Modes of cancer cell invasion and the role of the microenvironment. Curr. Opin. Cell Biol. 36, 13–22 (2015)CrossRefGoogle Scholar
  4. 4.
    Denais, C.M., Gilbert, R.M., Isermann, P., et al.: Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016)CrossRefGoogle Scholar
  5. 5.
    Raab, M., Gentili, M., de Belly, H., et al.: ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016)CrossRefGoogle Scholar
  6. 6.
    Harada, T., Swift, J., Irianto, J., et al.: Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204, 669–682 (2014)CrossRefGoogle Scholar
  7. 7.
    Irianto, J., Pfeifer, C.R., Ivanovska, I.L., et al.: Nuclear lamins in cancer. Cell. Mol. Bioeng. 9, 258–267 (2016)CrossRefGoogle Scholar
  8. 8.
    Swift, J., Ivanovska, I.L., Buxboim, A., et al.: Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013)CrossRefGoogle Scholar
  9. 9.
    Yates, L.R., Knappskog, S., Wedge, D., et al.: Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169–184 (2017)CrossRefGoogle Scholar
  10. 10.
    Pfeifer, C.R., Alvey, C.M., Irianto, J., et al.: Genome variation across cancers scales with tissue stiffness—an invasion-mutation mechanism and implications for immune cell infiltration. Curr. Opin. Syst. Biol. 2, 103–114 (2017)CrossRefGoogle Scholar
  11. 11.
    Tomasetti, C., Vogelstein, B.: Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015)CrossRefGoogle Scholar
  12. 12.
    Alshareeda, A.T., Negm, O.H., Aleskandarany, M.A., et al.: Clinical and biological significance of RAD51 expression in breast cancer: a key DNA damage response protein. Breast Cancer Res. Treat. 159, 41–53 (2016)CrossRefGoogle Scholar
  13. 13.
    Irianto, J., Pfeifer, C.R., Xia, Y., et al.: Constricted cell migration causes nuclear lamina damage, DNA breaks, and squeeze-out of repair factors. BioRxiv 035626 (2015)Google Scholar
  14. 14.
    Burke, B., Roux, K.J.: Nuclei take a position: managing nuclear location. Dev. Cell 17, 587–597 (2009)CrossRefGoogle Scholar
  15. 15.
    Edens, L.J., White, K.H., Jevtic, P., et al.: Nuclear size regulation: from single cells to development and disease. Trends Cell Biol. 23, 151–159 (2013)CrossRefGoogle Scholar
  16. 16.
    Liotta, L.A., Steeg, P.S., Stetler-Stevenson, W.G.: Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327–336 (1991)CrossRefGoogle Scholar
  17. 17.
    Li, Y., Lovett, D., Zhang, Q., et al.: Moving cell boundaries drive nuclear shaping during cell spreading. Biophys. J. 109, 670–686 (2015)CrossRefGoogle Scholar
  18. 18.
    Webster, M., Witkin, K.L., Cohen-Fix, O.: Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J. Cell Sci. 122, 1477–1486 (2009)CrossRefGoogle Scholar
  19. 19.
    Alam, S., Lovett, D.B., Dickinson, R.B., et al.: Nuclear forces and cell mechanosensing. Prog. Mol. Biol. Transl. Sci. 126, 205–215 (2014)CrossRefGoogle Scholar
  20. 20.
    Cho, S., Irianto, J., Discher, D.E.: Mechanosensing by the nucleus: from pathways to scaling relationships. J. Cell Biol. 216, 305–315 (2017)CrossRefGoogle Scholar
  21. 21.
    Guilluy, C., Burridge, K.: Nuclear mechanotransduction: forcing the nucleus to respond. Nucleus 6, 19–22 (2015)CrossRefGoogle Scholar
  22. 22.
    Chin, L., Xia, Y., Discher, D.E., et al.: Mechanotransduction in cancer. Curr. Opin. Chem. Eng. 11, 77–84 (2016)CrossRefGoogle Scholar
  23. 23.
    Lee, Y.L., Burke, B.: LINC complexes and nuclear positioning. Semin. Cell Dev. Biol. 82, 67–76 (2018)CrossRefGoogle Scholar
  24. 24.
    Mazumder, A., Shivashankar, G.V.: Emergence of a prestressed eukaryotic nucleus during cellular differentiation and development. J. R. Soc. Interface 7, S321–S330 (2010)CrossRefGoogle Scholar
  25. 25.
    Nagayama, K., Yahiro, Y., Matsumoto, T.: Stress fibers stabilize the position of intranuclear DNA through mechanical connection with the nucleus in vascular smooth muscle cells. FEBS Lett. 585, 3992–3997 (2011)CrossRefGoogle Scholar
  26. 26.
    Tapley, E.C., Starr, D.A.: Connecting the nucleus to the cytoskeleton by SUN-KASH bridges across the nuclear envelope. Curr. Opin. Cell Biol. 25, 57–62 (2013)CrossRefGoogle Scholar
  27. 27.
    Arsenovic, P.T., Ramachandran, I., Bathula, K., et al.: Nesprin-2G, a component of the nuclear LINC complex, is subject to myosin-dependent tension. Biophys. J. 110, 34–43 (2016)CrossRefGoogle Scholar
  28. 28.
    Graumann, K., Vanrobays, E., Tutois, S., et al.: Characterization of two distinct subfamilies of SUN-domain proteins in Arabidopsis and their interactions with the novel KASH-domain protein AtTIK. J. Exp. Bot. 65, 6499–6512 (2014)CrossRefGoogle Scholar
  29. 29.
    Kim, J.K., Louhghalam, A., Lee, G., et al.: Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology. Nat. Commun. 8, 2123 (2017)CrossRefGoogle Scholar
  30. 30.
    Ramdas, N.M., Shivashankar, G.V.: Cytoskeletal control of nuclear morphology and chromatin organization. J. Mol. Biol. 427, 695–706 (2015)CrossRefGoogle Scholar
  31. 31.
    Uhler, C., Shivashankar, G.V.: Regulation of genome organization and gene expression by nuclear mechanotransduction. Nat. Rev. Mol. Cell Biol. 18, 717–727 (2017)CrossRefGoogle Scholar
  32. 32.
    Turgay, Y., Eibauer, M., Goldman, A.E., et al.: The molecular architecture of lamins in somatic cells. Nature 543, 261–264 (2017)CrossRefGoogle Scholar
  33. 33.
    Belaadi, N., Aureille, J., Guilluy, C.: Under pressure: mechanical stress management in the nucleus. Cells 5, 27 (2016)CrossRefGoogle Scholar
  34. 34.
    Dechat, T., Adam, S.A., Taimen, P., et al.: Nuclear lamins. Cold Spring Harb. Perspect. Biol. 2, a000547 (2010)CrossRefGoogle Scholar
  35. 35.
    Jung, H.J., Nobumori, C., Goulbourne, C.N., et al.: Farnesylation of lamin B1 is important for retention of nuclear chromatin during neuronal migration. Proc. Natl. Acad. Sci. U.S.A. 110, E1923–E1932 (2013)CrossRefGoogle Scholar
  36. 36.
    Goldman, R.D., Gruenbaum, Y., Moir, R.D., et al.: Nuclear lamins: building blocks of nuclear architecture. Genes Dev. 16, 533–547 (2002)CrossRefGoogle Scholar
  37. 37.
    Gilchrist, S., Gilbert, N., Perry, P., et al.: Altered protein dynamics of disease-associated lamin A mutants. BMC Cell Biol. 5, 46 (2004)CrossRefGoogle Scholar
  38. 38.
    Moir, R.D., Yoon, M., Khuon, S., et al.: Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J. Cell Biol. 151, 1155–1168 (2000)CrossRefGoogle Scholar
  39. 39.
    Buxboim, A., Swift, J., Irianto, J., et al.: Matrix elasticity regulates lamin-A, C phosphorylation and turnover with feedback to actomyosin. Curr. Biol. 24, 1909–1917 (2014)CrossRefGoogle Scholar
  40. 40.
    Dingal, P.C., Discher, D.E.: Systems mechanobiology: tension-inhibited protein turnover is sufficient to physically control gene circuits. Biophys. J. 107, 2734–2743 (2014)CrossRefGoogle Scholar
  41. 41.
    Vigouroux, C., Auclair, M., Dubosclard, E., et al.: Nuclear envelope disorganization in fibroblasts from lipodystrophic patients with heterozygous R482Q/W mutations in the lamin A/C gene. J. Cell Sci. 114, 4459–4468 (2001)Google Scholar
  42. 42.
    Muchir, A., Medioni, J., Laluc, M., et al.: Nuclear envelope alterations in fibroblasts from patients with muscular dystrophy, cardiomyopathy, and partial lipodystrophy carrying lamin A/C gene mutations. Muscle Nerve 30, 444–450 (2004)CrossRefGoogle Scholar
  43. 43.
    Cho, S., Abbas, A., Irianto, J., et al.: Progerin phosphorylation in interphase is lower and less mechanosensitive than lamin-A, C in iPS-derived mesenchymal stem cells. Nucleus 9, 230–245 (2018)CrossRefGoogle Scholar
  44. 44.
    Vicente-Manzanares, M., Ma, X., Adelstein, R.S., et al.: Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10, 778–790 (2009)CrossRefGoogle Scholar
  45. 45.
    Khatau, S.B., Hale, C.M., Stewart-Hutchinson, P.J., et al.: A perinuclear actin cap regulates nuclear shape. Proc. Natl. Acad. Sci. U.S.A. 106, 19017–19022 (2009)CrossRefGoogle Scholar
  46. 46.
    Pajerowski, J.D., Dahl, K.N., Zhong, F.L., et al.: Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl. Acad. Sci. U.S.A. 104, 15619–15624 (2007)CrossRefGoogle Scholar
  47. 47.
    Lammerding, J., Fong, L.G., Ji, J.Y., et al.: Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281, 25768–25780 (2006)CrossRefGoogle Scholar
  48. 48.
    Vicente-Manzanares, M., Webb, D.J., Horwitz, A.R.: Cell migration at a glance. J. Cell Sci. 118, 4917–4919 (2005)CrossRefGoogle Scholar
  49. 49.
    Ridley, A.J., Schwartz, M.A., Burridge, K., et al.: Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003)CrossRefGoogle Scholar
  50. 50.
    Etienne-Manneville, S.: Microtubules in cell migration. Annu. Rev. Cell Dev. Biol. 29, 471–499 (2013)CrossRefGoogle Scholar
  51. 51.
    Ganguly, A., Yang, H., Sharma, R., et al.: The role of microtubules and their dynamics in cell migration. J. Biol. Chem. 287, 43359–43369 (2012)CrossRefGoogle Scholar
  52. 52.
    Yamaguchi, H., Condeelis, J.: Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim. Biophys. Acta 1773, 642–652 (2007)CrossRefGoogle Scholar
  53. 53.
    Mogilner, A., Oster, G.: Cell motility driven by actin polymerization. Biophys. J. 71, 3030–3045 (1996)CrossRefGoogle Scholar
  54. 54.
    Pasapera, A.M., Schneider, I.C., Rericha, E., et al.: Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol. 188, 877–890 (2010)CrossRefGoogle Scholar
  55. 55.
    Jorrisch, M.H., Shih, W., Yamada, S.: Myosin IIA deficient cells migrate efficiently despite reduced traction forces at cell periphery. Biol. Open 2, 368–372 (2013)CrossRefGoogle Scholar
  56. 56.
    Doyle, A.D., Kutys, M.L., Conti, M.A., et al.: Micro-environmental control of cell migration—myosin IIA is required for efficient migration in fibrillar environments through control of cell adhesion dynamics. J. Cell Sci. 125, 2244–2256 (2012)CrossRefGoogle Scholar
  57. 57.
    Friedl, P., Zanker, K.S., Brocker, E.B.: Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc. Res. Tech. 43, 369–378 (1998)CrossRefGoogle Scholar
  58. 58.
    Beach, J.R., Shao, L., Remmert, K., et al.: Nonmuscle myosin II isoforms coassemble in living cells. Curr. Biol. 24, 1160–1166 (2014)CrossRefGoogle Scholar
  59. 59.
    Vicente-Manzanares, M., Zareno, J., Whitmore, L., et al.: Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J. Cell Biol. 176, 573–580 (2007)CrossRefGoogle Scholar
  60. 60.
    Chang, W., Folker, E.S., Worman, H.J., et al.: Emerin organizes actin flow for nuclear movement and centrosome orientation in migrating fibroblasts. Mol. Biol. Cell 24, 3869–3880 (2013)CrossRefGoogle Scholar
  61. 61.
    Raab, M., Swift, J., Dingal, P.C., et al.: Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J. Cell Biol. 199, 669–683 (2012)CrossRefGoogle Scholar
  62. 62.
    Irianto, J., Pfeifer, C.R., Xia, Y., et al.: Snapshot: mechanosensing matrix. Cell 165, 1820 (2016)CrossRefGoogle Scholar
  63. 63.
    Irianto, J., Pfeifer, C.R., Bennett, R.R., et al.: Nuclear constriction segregates mobile nuclear proteins away from chromatin. Mol. Biol. Cell 27, 4011–4020 (2016)CrossRefGoogle Scholar
  64. 64.
    Cao, X., Moeendarbary, E., Isermann, P., et al.: A chemomechanical model for nuclear morphology and stresses during cell transendothelial migration. Biophys. J. 111, 1541–1552 (2016)CrossRefGoogle Scholar
  65. 65.
    Shenoy, V.B., Wang, H., Wang, X.: A chemo-mechanical free-energy-based approach to model durotaxis and extracellular stiffness-dependent contraction and polarization of cells. Interface Focus 6, 20150067 (2016)CrossRefGoogle Scholar
  66. 66.
    Zhang, X., Xu, R., Zhu, B., et al.: Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134, 901–908 (2007)CrossRefGoogle Scholar
  67. 67.
    Lammermann, T., Bader, B.L., Monkley, S.J., et al.: Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008)CrossRefGoogle Scholar
  68. 68.
    Thomas, D.G., Yenepalli, A., Denais, C.M., et al.: Non-muscle myosin IIB is critical for nuclear translocation during 3D invasion. J. Cell Biol. 210, 583–594 (2015)CrossRefGoogle Scholar
  69. 69.
    Beadle, C., Assanah, M.C., Monzo, P., et al.: The role of myosin II in glioma invasion of the brain. Mol. Biol. Cell 19, 3357–3368 (2008)CrossRefGoogle Scholar
  70. 70.
    Thiam, H.R., Vargas, P., Carpi, N., et al.: Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat. Commun. 7, 10997 (2016)CrossRefGoogle Scholar
  71. 71.
    Chen, M.B., Whisler, J.A., Jeon, J.S., et al.: Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr. Biol. 5, 1262–1271 (2013)CrossRefGoogle Scholar
  72. 72.
    Irianto, J., Xia, Y., Pfeifer, C.R., et al.: As a nucleus enters a small pore, chromatin stretches and maintains integrity, even with DNA breaks. Biophys. J. 112, 446–449 (2016)CrossRefGoogle Scholar
  73. 73.
    Wu, J., Kent, I.A., Shekhar, N., et al.: Actomyosin pulls to advance the nucleus in a migrating tissue cell. Biophys. J. 106, 7–15 (2014)CrossRefGoogle Scholar
  74. 74.
    Irianto, J., Xia, Y., Pfeifer, C.R., et al.: DNA damage follows repair factor depletion and portends genome variation in cancer cells after pore migration. Curr. Biol. 27, 210–223 (2017)CrossRefGoogle Scholar
  75. 75.
    De Vos, W.H., Houben, F., Kamps, M., et al.: Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum. Mol. Genet. 20, 4175–4186 (2011)CrossRefGoogle Scholar
  76. 76.
    Tamiello, C., Kamps, M.A., van den Wijngaard, A., et al.: Soft substrates normalize nuclear morphology and prevent nuclear rupture in fibroblasts from a laminopathy patient with compound heterozygous LMNA mutations. Nucleus 4, 61–73 (2013)CrossRefGoogle Scholar
  77. 77.
    Hatch, E.M., Hetzer, M.W.: Nuclear envelope rupture is induced by actin-based nucleus confinement. J. Cell Biol. 215, 27–36 (2016)CrossRefGoogle Scholar
  78. 78.
    Xia, Y., Ivanovska, I.L., Zhu, K., et al.: Nuclear rupture at sites of high curvature compromises retention of DNA repair factors. J. Cell Biol. 217, 3796–3808 (2018)CrossRefGoogle Scholar
  79. 79.
    Raschke, S., Spickermann, S., Toncian, T., et al.: Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams. Sci. Rep. 6, 32441 (2016)CrossRefGoogle Scholar
  80. 80.
    Luecke, S., Holleufer, A., Christensen, M.H., et al.: cGAS is activated by DNA in a length-dependent manner. EMBO Rep. 18, 1701–1715 (2017)CrossRefGoogle Scholar
  81. 81.
    Chen, Q., Sun, L., Chen, Z.J.: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142–1149 (2016)CrossRefGoogle Scholar
  82. 82.
    Harding, S.M., Benci, J.L., Irianto, J., et al.: Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017)CrossRefGoogle Scholar
  83. 83.
    Vietri, M., Schink, K.O., Campsteijn, C., et al.: Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 522, 231–235 (2015)CrossRefGoogle Scholar
  84. 84.
    Olmos, Y., Hodgson, L., Mantell, J., et al.: ESCRT-III controls nuclear envelope reformation. Nature 522, 236–239 (2015)CrossRefGoogle Scholar
  85. 85.
    Jimenez, A.J., Maiuri, P., Lafaurie-Janvore, J., et al.: ESCRT machinery is required for plasma membrane repair. Science 343, 1247136 (2014)CrossRefGoogle Scholar
  86. 86.
    Bennett, R.R., Pfeifer, C.R., Irianto, J., et al.: Elastic-fluid model for DNA damage and mutation from nuclear fluid segregation due to cell migration. Biophys. J. 112, 2271–2279 (2017)CrossRefGoogle Scholar
  87. 87.
    Bancaud, A., Huet, S., Daigle, N., et al.: Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J. 28, 3785–3798 (2009)CrossRefGoogle Scholar
  88. 88.
    Deviri, D., Discher, D.E., Safran, S.A.: Rupture dynamics and chromatin herniation in deformed nuclei. Biophys. J. 113, 1060–1071 (2017)CrossRefGoogle Scholar
  89. 89.
    Odde, D.J., Ma, L., Briggs, A.H., et al.: Microtubule bending and breaking in living fibroblast cells. J. Cell Sci. 112, 3283–3288 (1999)Google Scholar
  90. 90.
    Engler, A.J., Sen, S., Sweeney, H.L., et al.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)CrossRefGoogle Scholar
  91. 91.
    Ivanovska, I.L., Swift, J., Spinler, K., et al.: Cross-linked matrix rigidity and soluble retinoids synergize in nuclear lamina regulation of stem cell differentiation. Mol. Biol. Cell 28, 2010–2022 (2017)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuntao Xia
    • 1
    • 2
  • Charlotte R. Pfeifer
    • 1
    • 2
    • 3
  • Dennis E. Discher
    • 1
    • 2
    • 3
    Email author
  1. 1.Physical Sciences Oncology Center at Pennsylvania (PSOC@Penn)University of PennsylvaniaPhiladelphiaUSA
  2. 2.Molecular and Cell Biophysics LabUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations