Acta Mechanica Sinica

, Volume 33, Issue 1, pp 20–39 | Cite as

A corrected particle method with high-order Taylor expansion for solving the viscoelastic fluid flow

Research Paper


In this paper, a corrected particle method based on the smoothed particle hydrodynamics (SPH) method with high-order Taylor expansion (CSPH-HT) for solving the viscoelastic flow is proposed and investigated. The validity and merits of the CSPH-HT method are first tested by solving the nonlinear high order Kuramoto-Sivishinsky equation and simulating the drop stretching, respectively. Then the flow behaviors behind two stationary tangential cylinders of polymer melt, which have been received little attention, are investigated by the CSPH-HT method. Finally, the CSPH-HT method is extended to the simulation of the filling process of the viscoelastic fluid. The numerical results show that the CSPH-HT method possesses higher accuracy and stability than other corrected SPH methods and is more reliable than other corrected SPH methods.


Smoothed particle hydrodynamics High-order Taylor expansion Viscoelastic fluid Extended pom-pom model 



The support of the National Natural Science Foundation of China (Grants 11501495, 51541912, 51409227), the Natural Science Foundation of Jiangsu Province, China (Grants BK20130436, BK20150436), the Postdoctoral Science Foundation of China (Grants 2014M550310, 2015M581869, 2015T80589), and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (Grant 15KJB110025) are gratefully acknowledged.


  1. 1.
    Li, X.K., Duan, Q.L., Han, X.H., et al.: Adaptive coupled arbitrary Lagrangian–Eulerian finite element and meshfree method for injection molding process. Int. J. Numer. Methods Eng. 73, 1153–1180 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Nakayama, T., Washizu, K.: The boundary element method applied to the analysis of two-dimensional nonlinear sloshing problems. Int. J. Numer. Methods Eng. 17, 1631–1646 (1981)CrossRefMATHGoogle Scholar
  3. 3.
    Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)CrossRefMATHGoogle Scholar
  4. 4.
    Harlow, F.H., Amsden, A.A.: A simplified MAC technique for incompressible fluid flow calculations. J. Comput. Phys. 6, 322–325 (1970)CrossRefMATHGoogle Scholar
  5. 5.
    Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)CrossRefMATHGoogle Scholar
  6. 6.
    Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 83, 1013–1024 (1977)CrossRefGoogle Scholar
  7. 7.
    Belytschko, T., Krongauz, Y.K., Fleming, D., et al.: Meshless methods: an overview and recent development. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)CrossRefMATHGoogle Scholar
  8. 8.
    Li, S.F., Liu, W.K.: Mesh-free and particle methods and their applications. Appl. Mech. Rev. 55, 1–34 (2002)CrossRefGoogle Scholar
  9. 9.
    Liu, G.R., Liu, M.B.: Smoothed Particle Hydrodynamics: A Mesh-free Particle Method. World Scientific, Singapore (2003)CrossRefMATHGoogle Scholar
  10. 10.
    Liu, M.B., Liu, G.R.: Restoring particle consistency in smoothed particle hydrodynamics. Appl. Numer. Math. 56, 19–36 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Liu, M.B., Liu, G.R., Lam, K.Y.: Constructing smoothing functions in smoothed particle hydrodynamics with applications. J. Comput. Appl. Math. 155, 263–284 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chen, J.K., Beraun, J.E., Carney, T.C.: A corrective smoothed particle method for boundary value problems in heat conduction. Int. J. Numer. Methods Eng. 46, 231–252 (1999)CrossRefMATHGoogle Scholar
  13. 13.
    Batra, R.C., Zhang, G.M.: Search algorithm and simulation of elastodynamic crack propagation by modified smoothed particle hydrodynamics (MSPH) method. Comput. Mech. 40, 531–546 (2007)CrossRefMATHGoogle Scholar
  14. 14.
    Batra, R.C., Zhang, G.M.: Symmetric smoothed particle hydrodynamics (SSPH) method and its application to elastic problems. Comput. Mech. 43, 321–340 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ren, J.L., Ouyang, J., Jiang, T.: Simulation of complex filling process based on the generalized Newtonian fluid model using a corrected SPH scheme. Comput. Mech. 49, 643–665 (2012)Google Scholar
  16. 16.
    Oishi, C.M., Martins, F.P., Tomé, M.F., et al.: Numerical solution of drop impact and jet buckling problems using the eXtended Pom-Pom model. J. Non-Newton. Fluid Mech. 169–170, 91–103 (2012)Google Scholar
  17. 17.
    Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 448–475 (2003)CrossRefMATHGoogle Scholar
  18. 18.
    Fang, J., Parriaux, A., Rentschler, M., et al.: Improved SPH methods for simulating free surface flows of viscous fluids. Appl. Numer. Math. 59, 251–271 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Belvtschko, T., Krongauz, Y., Dolbow, J., et al.: On the completeness of meshfree particle methods. Int. J. Numer. Methods Eng. 43, 785–819 (1998)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Bonet, J., Lok, T.-S.L.: Variational and momentum preservation aspects of smooth particle hydrodynamics formulations. Comput. Methods Appl. Mech. Eng. 180, 97–115 (1999)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Sivashinsky, G.I.: Instabilities, pattern formation, and turbulence in flames. Ann. Rev. Fluid Mech. 15, 179–199 (1983)CrossRefMATHGoogle Scholar
  22. 22.
    Sivashinsky, G.I., Michelson, D.M.: On irregular wavy flow of a liquid film down a vertical palne. Prog. Theor. Phys. 63, 2112–2114 (1980)CrossRefGoogle Scholar
  23. 23.
    Uddin, M., Haq, S., Islam, S.U.: A mesh-free numerical method for solution of the family of Kuramoto–Sivashinsky equations. Appl. Math. Comput. 212, 458–469 (2009)MathSciNetMATHGoogle Scholar
  24. 24.
    Tomé, M.F., Mangiavacchi, N., Castelo, A., et al.: A finite difference technique for simulating unsteady viscoelastic free surface flows. J. Non-Newton. Fluid Mech. 106, 61–106 (2002)CrossRefMATHGoogle Scholar
  25. 25.
    Liu, A.W.: Viscoelastic flow of polymer solutions around arrays of cylinders: comparison of experiment and theory. [Ph.D. Thesis], Massachusetts Institute of Technology, America (1997)Google Scholar
  26. 26.
    Liu, A.W., Borniside, D.E., Armstrong, R.C.: Viscoelastic flow of polymer solutions around a periodic, linear array of cylinders: comparison of predictions for microstructure and flow fields. J. Non-Newton. Fluid Mech. 77, 153–190 (1998)CrossRefMATHGoogle Scholar
  27. 27.
    Sahin, M., Owens, R.G.: On the effects of viscoelasticity on two-dimensional vortex dynamics in the cylinder wake. J. Non-Newton. Fluid Mech. 123, 121–139 (2004)CrossRefMATHGoogle Scholar
  28. 28.
    Ellero, M., Adams, N.A.: SPH simulations of flow around a periodic array of cylinders confined in a channel. Int. J. Numer. Methods Eng. 86, 1027–1040 (2011)CrossRefMATHGoogle Scholar
  29. 29.
    Dou, H.-S., Phan-Thien, N.: The flow of an Oldroyd-B fluid past a cylinder in a channel: adaptive viscosity vorticity formulation. J. Non-Newton. Fluid Mech. 87, 47–73 (1999)CrossRefMATHGoogle Scholar
  30. 30.
    Smith, M.D., Joo, Y.L., Armstrong, R.C., et al.: Linear stability analysis of flow of an Oldroyd-B fluid through a linear array of cylinders. J. Non-Newton. Fluid Mech. 109, 13–50 (2003)CrossRefMATHGoogle Scholar
  31. 31.
    Oliveira, P.J., Miranda, A.I.P.: A numerical study of steady and unsteady viscoelastic flow past bounded cylinders. J. Non-Newton. Fluid Mech. 127, 51–66 (2005)CrossRefMATHGoogle Scholar
  32. 32.
    Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110, 399–406 (1994)CrossRefMATHGoogle Scholar
  33. 33.
    Ellero, M., Tanner, R.I.: SPH simulations of transient viscoelastic flows at low Reynolds number. J. Non-Newton. Fluid Mech. 132, 61–72 (2005)CrossRefMATHGoogle Scholar
  34. 34.
    Fei, B.L., Zheng, T.H., Yang, J.L.: Numerical simulation of flow over two tandem cylinders. J. Southwest Univ. Natl. Nat. Sci. Ed. 33, 376–380 (2007) (in Chinese)Google Scholar
  35. 35.
    Quinlan, N.J., Basa, M., Lastiwka, M.: Truncation error in mesh-free particle methods. Int. J. Numer. Methods Eng. 66, 2064–2085 (2006)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Mathematical SciencesYangzhou UniversityYangzhouChina
  2. 2.Department of Applied MathematicsNorthwestern Polytechnical UniversityXi’anChina
  3. 3.School of Hydraulic, Energy and Power EngineeringYangzhou UniversityYangzhouChina

Personalised recommendations