Acta Mechanica Sinica

, Volume 33, Issue 1, pp 208–218 | Cite as

Analytical method for the attitude stability of partially liquid filled spacecraft with flexible appendage

Research Paper


In this paper, the attitude stability of liquid-filled spacecraft with flexible appendage is investigated. The motion of liquid sloshing is modeled as the spherical pendulum, and the flexible appendage is approached by a linear shearing beam. Nonlinear dynamic equations of the coupled system are derived from the Hamiltonian. The stability of the coupled system was analyzed by using the energy-Casimir method, and the nonlinear stability theorem of the coupled spacecraft system was also obtained. Through numerical computation, the correctness of the proposed theorem is verified and the boundary curves of the stable region are presented. The increase of the angular velocity and flexible attachment length will weaken the attitude stability, and the change of the filled ratio of liquid fuel tank has a different influence on the stability of the coupled spacecraft, depending on the different conditions. The attitude stability analysis of the coupled spacecraft system in this context is useful for selecting appropriate parameters in the complex spacecraft design.


Liquid-filled spacecraft Energy-Casimir method Flexible attachment Stability analysis 



The project was supported by the National Natural Science Foundation of China (Grants 11472041, 11532002) and the Doctoral Fund of Ministry of Education of China (Grant 20131101110002).


  1. 1.
    Miao, N., Wang, T.S., Li, J.F.: Research progress of liquid sloshing in microgravity. Mech. Eng. 38, 229–236 (2016). doi: 10.6052/1000-0879-15-185 Google Scholar
  2. 2.
    Kusnierkiewicz, D.Y., Hersman, C.B., Fountain, G.H., et al.: System engineering challenges on the new horizons project. In: 57th International Astronautical Congress, Valencia (2008) doi: 10.2514/6.IAC-06-D1.5.03
  3. 3.
    Lu, J., Wang, S.M., Wang, T.S.: Coupling dynamic analysis of a liquid-filled spherical container subject to arbitrary excitation. Acta Mech. Sin. 28, 1154–1162 (2012). doi: 10.1007/s10409-012-0119-2 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Wu, W.J., Yue, B.Z., Huang, H.: Coupling dynamic analysis of spacecraft with multiple cylindrical tanks and flexible appendages. Acta Mech. Sin. 32, 144–155 (2015). doi: 10.1007/s10409-015-0497-3 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bauer, H.F.: Stability boundaries of liquid-propelled space vehicles with sloshing. AIAA J. 1, 1583–1589 (1963). doi: 10.2514/3.1861 CrossRefMATHGoogle Scholar
  6. 6.
    Kana, D.D., Chu, W.: Dynamic stability of cylindrical propellant tanks. J. Spacecr. Rocket. 7, 587–593 (1970). doi: 10.2514/3.29995 CrossRefGoogle Scholar
  7. 7.
    Veldman, A.E.P., Gerrits, J., Luppes, R., et al.: The numerical simulation of liquid sloshing on board spacecraft. J. Comput. Phys. 224, 82–99 (2007). doi: 10.1016/ MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Agrawal, B.N.: Dynamic characteristics of liquid motion in partially filled tanks of a spinning spacecraft. J. Guid. Control Dyn. 16, 636–640 (1993). doi: 10.2514/3.21061 CrossRefGoogle Scholar
  9. 9.
    Bao, G.W., Pascal, M.: Stability of a spinning liquid-filled spacecraft. Arch. Appl. Mech. 67, 407–421 (1997). doi: 10.1007/s004190050127 CrossRefMATHGoogle Scholar
  10. 10.
    Agrawal, B.N.: Stability of spinning spacecraft with partially liquid-filled tanks. J. Guid. Control Dyn. 5, 344–350 (1982). doi: 10.2514/3.56181 CrossRefGoogle Scholar
  11. 11.
    Li, J.F., Wang, Z.L.: Attitude dynamics of a liquid-filled spacecraft with a manipulator. Commun. Nonlinear Sci. 2, 26–30 (1997). doi: 10.1016/S1007-5704(97)90033-2 CrossRefMATHGoogle Scholar
  12. 12.
    Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, 2nd edn. Springer, New York (1998)Google Scholar
  13. 13.
    Arnold, V.I.: An a priori estimate in the theory of hydrodynamic stability. Izv. Vyssh. Uchebn. Zaved. Mat. 5, 3–5 (1966) (in Russian)Google Scholar
  14. 14.
    Krishnaprasad, P.S., Marsden, J.E.: Hamiltonian structures and stability for rigid bodies with flexible attachments. Arch. Ration. Mech. Anal. 98, 71–93 (1987). doi: 10.1007/BF00279963 MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Posbergh, T.A., Krishnaprasad, P.S., Marsden, J.E.: Stability analysis of a rigid body with a flexible attachment using the energy-Casimir method. Commun. Contemp. Math. 68, 253–273 (1987). doi: 10.1090/conm/068/924816 MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Bloch, A.M., Marsden, J.E.: Stabilization of rigid body dynamics by the energy-Casimir method. Syst. Control. Lett. 14, 341–346 (1990). doi: 10.1016/0167-6911(90)90055-Y MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Yue, B.Z., Salman, A., Song, X.J.: Casimir method for attitude stability analysis of liquid-filled spacecraft. Sci. Sin. Ser. A 43, 401–406 (2013). doi: 10.1016/0167-6911(90)90055-Y Google Scholar
  18. 18.
    Salman, A., Yue, B.Z.: Bifurcation and stability analysis of the Hamiltonian Casimir model of liquid sloshing. Chin. Phys. Lett. 29, 060501 (2012). doi: 10.1088/0256-307X/29/6/060501 CrossRefGoogle Scholar
  19. 19.
    Hesham, S., Gang, T.: Zero dynamics analysis for spacecraft with fuel slosh. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu (2008) doi: 10.2514/6.2008-6455
  20. 20.
    Yue, B.Z.: Study on the chaotic dynamics in attitude maneuver of liquid-filled flexible spacecraft. AIAA J. 49, 2090–2099 (2011). doi: 10.2514/1.J050144 CrossRefMATHGoogle Scholar
  21. 21.
    Ibrahim, R.A.: Liquid Sloshing Dynamics Theory and Applications, 1st edn. Cambridge University Press, New York (2005)CrossRefMATHGoogle Scholar
  22. 22.
    Holm, D.D., Marsden, J.E., Ratiu, T., et al.: Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 85, 1–116 (1985). doi: 10.1016/0370-1573(85)90028-6 MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Dodge, F.T.: The new dynamic behavior of liquids in moving containers. Southwest Research Inst., San Antonio, NASA SP-106. (2000)Google Scholar
  24. 24.
    Kana, D.D.: Validated spherical pendulum model for rotary liquid slosh. J. Spacecr. Rocket. 26, 188–195 (1989). doi: 10.2514/3.26052 CrossRefGoogle Scholar
  25. 25.
    Dai, L.M., Wang, X.J.: Effects of viscosity and varying gravity on liquid sloshing in a carrier subjected to external excitations. Int. J. Dyn. Control. 2, 521–532 (2014). doi: 10.1007/s40435-014-0072-y CrossRefGoogle Scholar
  26. 26.
    Farid, M., Gendelman, O.V.: Internal resonances and dynamic responses in equivalent mechanical model of partially liquid-filled vessel. J. Sound. Vib. 379, 191–212 (2016). doi: 10.1016/j.jsv.2016.05.046
  27. 27.
    Srinivasacharya, D., Prasad, M.K.: Steady rotation of a composite sphere in a concentric spherical cavity. Acta Mech. Sin. 28, 653–658 (2012). doi: 10.1007/s10409-012-0057-z MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Aerospace EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations