Acta Mechanica Sinica

, Volume 32, Issue 5, pp 866–880 | Cite as

Tuning of non-uniform switch toughening in ferroelectric composites by an electric field

  • Xiaodong Xia
  • Zheng Zhong
Research Paper


This paper deals with a mode III interfacial crack subject to anti-plane stress and in-plane electric fields. The analysis concentrates on the tuning of fracture toughness from non-uniform ferroelectric-ferroelastic domain switching by an electric field. The electric loading changes the size of the asymmetric switching zone. Employing the weight function method, we obtain the electrically-dependent switch toughening for stationary and quasi-static growing interfacial cracks, respectively. Multi-domain solutions are derived for non-poled and fully-poled ferroelectric composites. Numerical results are presented on the electric field tuning of the critical applied stress intensity factor. The research provides ways to optimize fracture properties of ferroelectric composites by altering the electric field.


Interfacial crack Electric field tuning Domain switching Ferroelectric-ferroelastic Toughening 



The project was sponsored by the National Natural Science Foundation of China (Grants 11090334, 11572227).


  1. 1.
    Scott, J.F.: Prospects for ferroelectrics: 2012–2022. ISRN Mat. Sci. 2013, 187313 (2013)Google Scholar
  2. 2.
    Scott, J.F.: Applications of modern ferroelectrics. Science 315, 954–959 (2007)CrossRefGoogle Scholar
  3. 3.
    Kim, S., Bastani, Y., Lu, H.D., et al.: Direct fabrication of arbitrary-shaped ferroelectric nanostructures on plastic, glass, and silicon substrates. Adv. Mater. 23, 3786–3790 (2011)Google Scholar
  4. 4.
    Lu, H., Bark, C.W., de los Ojos, D.E., et al.: Mechanical writing of ferroelectricpolarization. Science 336, 59–61 (2012)Google Scholar
  5. 5.
    Pritchard, J., Bowen, C.R., Lowrie, F.: Multilayer actuators: review. Br. Ceram. Trans. 100, 265–273 (2001)CrossRefGoogle Scholar
  6. 6.
    Häusler, C., Jelitto, H., Neumeister, P., et al.: Interfacial fracture of piezoelectric multilayer actuators under mechanical and electrical loading. Int. J. Fract. 160, 43–54 (2009)CrossRefGoogle Scholar
  7. 7.
    Furuta, A., Uchino, K.: Dynamic observation of crack propagation in piezoelectric multilayer actuators. J. Am. Ceram. Soc. 76, 1615–1617 (1993)CrossRefGoogle Scholar
  8. 8.
    Chen, Y.H., Hasebe, N.: Current understanding on fracture behaviors of ferroelectric/piezoelectric materials. J. Intell. Mater. Syst. Struct. 16, 673–687 (2005)CrossRefGoogle Scholar
  9. 9.
    Govorukha, V., Kamlah, M., Loboda, V., et al.: Interface cracks in piezoelectric materials. Smart Mater. Struct. 25, 023001 (2016)CrossRefGoogle Scholar
  10. 10.
    Suo, Z., Kuo, C.M., Barnett, D.M., et al.: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40, 739–765 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ru, C.Q.: Exact solution for finite electrode layers embedded at the interface of two piezoelectric half-planes. J. Mech. Phys. Solids 48, 693–708 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gao, C.F., Wang, M.Z.: Green’s functions of an interfacial crack between two dissimilar piezoelectric media. Int. J. Solids Struct. 38, 5323–5334 (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Beom, H.G.: Permeable cracks between two dissimilar piezoelectric materials. Int. J. Solids Struct. 40, 6669–6679 (2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    Li, Q., Chen, Y.H.: Analysis of a permeable interface crack in elastic dielectric/piezoelectric bimaterials. Acta Mech. Sin. 23, 681–687 (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Ou, Z.C., Wu, X.J.: On the crack-tip stress singularity of interfacial cracks in transversely isotropic piezoelectric bimaterials. Int. J. Solids Struct. 40, 7499–7511 (2003)CrossRefzbMATHGoogle Scholar
  16. 16.
    Narita, F., Shindo, Y.: Layered piezoelectric medium with interface crack under anti-plane shear. Theor. Appl. Fract. Mech. 30, 119–126 (1998)CrossRefGoogle Scholar
  17. 17.
    Soh, A.K., Fang, D.N., Lee, K.L.: Analysis of a bi-piezoelectric ceramic layer with an interfacial crack subjected to anti-plane shear and in-plane electric loading. Eur. J. Mech. A Solids 19, 961–977 (2000)CrossRefzbMATHGoogle Scholar
  18. 18.
    Li, X.F., Fan, T.Y., Wu, X.F.: A moving mode-III crack at the interface between two dissimilar piezoelectric materials. Int. J. Eng. Sci. 38, 1219–1234 (2000)CrossRefGoogle Scholar
  19. 19.
    Gao, C.F., Wang, M.Z.: General treatment of mode III interfacial crack problems in piezoelectric materials. Arch. Appl. Mech. 71, 296–306 (2001)CrossRefzbMATHGoogle Scholar
  20. 20.
    Li, R., Kardomateas, G.A.: The mode III interface crack in piezo-electro-magneto-elastic dissimilar bimaterials. J. Appl. Mech. 73, 220–227 (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    Li, X.F., Liu, G.L., Lee, K.Y.: Magnetoelectroelastic field induced by a crack terminating at the interface of a bi-magnetoelectric material. Philos. Mag. 89, 449–463 (2009)CrossRefGoogle Scholar
  22. 22.
    Calderon-Moreno, J.M.: Stress induced domain switching of PZT in compression tests. Mater. Sci. Eng. A 315, 227–230 (2001)CrossRefGoogle Scholar
  23. 23.
    Fang, F., Yang, W., Zhang, F.C., et al.: Domain structure evolution and fatigue cracking of 001-oriented \([{\rm Pb} ({\rm Mg}_{1/3}{\rm Nb}_{2/3}){\rm O}_{3}]0.67({\rm PbTiO}_{3})_{0.33}\) ferroelectric single crystals under cyclic electric loading. Appl. Phys. Lett. 91, 081903 (2007)CrossRefGoogle Scholar
  24. 24.
    Evans, D., Schilling, A., Kumar, A., et al.: Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT. Nat. Commun. 4, 1534 (2013)CrossRefGoogle Scholar
  25. 25.
    Park, S., Sun, C.T.: Fracture criteria for piezoelectric ceramics. J. Am. Ceram. Soc. 78, 1475–1480 (1995)CrossRefGoogle Scholar
  26. 26.
    Fu, R., Zhang, T.Y.: Effects of an electric field on the fracture toughness of poled lead zirconate titanate ceramics. J. Am. Ceram. Soc. 83, 1215–1218 (2000)CrossRefGoogle Scholar
  27. 27.
    dos Santos e Lucato, S.L., Bahr, H.A., Pham, V.B. et al.: Crack deflection in piezoelectric ceramics. J. Eur. Ceram. Soc. 23, 1147–1156 (2003)Google Scholar
  28. 28.
    Yang, W., Zhu, T.: Switch-toughening of ferroelectrics subjected to electric fields. J. Mech. Phys. Solids 46, 291–311 (1998)CrossRefzbMATHGoogle Scholar
  29. 29.
    Landis, C.M.: Uncoupled, asymptotic mode III and mode E crack tip solutions in non-linear ferroelectric materials. Eng. Fract. Mech. 69, 13–23 (2002)CrossRefGoogle Scholar
  30. 30.
    Wang, J., Landis, C.: Effects of in-plane electric fields on the toughening behavior of ferroelectric ceramics. J. Mech. Mater. Struct. 1, 1075–1095 (2006)CrossRefGoogle Scholar
  31. 31.
    Liu, M., Hsia, K.J.: Interfacial cracks between piezoelectric and elastic materials under in-plane electric loading. J. Mech. Phys. Solids 51, 921–944 (2003)CrossRefzbMATHGoogle Scholar
  32. 32.
    Liu, B., Fang, D.N.: Domain-switching embedded nonlinear electromechanical finite element method for ferroelectric ceramics. Sci. China Phys. Mech. Astron. 54, 606–617 (2011)CrossRefGoogle Scholar
  33. 33.
    Qiao, H., Wang, J., Chen, W.Q.: Phase field simulation of domain switching in ferroelectric single crystal with electrically permeable and impermeable cracks. Acta Mech. Solida Sin. 25, 1–8 (2012)CrossRefGoogle Scholar
  34. 34.
    Li, F.X., Sun, Y., Rajapakse, R.: Effect of electric boundary conditions on crack propagation in ferroelectric ceramics. Acta Mech. Sin. 30, 153–160 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Xia, X.D., Cui, Y.Q., Zhong, Z.: A mode III interfacial crack under nonuniform ferro-elastic domain switching. Theor. Appl. Fract. Mech. 69, 44–52 (2014)CrossRefGoogle Scholar
  36. 36.
    Zhu, T., Yang, W.: Toughness variation of ferroelectrics by polarization switch under non-uniform electric field. Acta Mater. 45, 4695–4702 (1997)CrossRefGoogle Scholar
  37. 37.
    Yang, W., Wang, H.T., Cui, Y.Q.: Composite Eshelby model and domain band geometries of ferroelectric ceramics. Sci. China Ser. E 44, 403–413 (2001)CrossRefGoogle Scholar
  38. 38.
    Cui, Y.Q., Zhong, Z.: A novel criterion for nonuniform domain switching of tetragonal ferroelectrics. Mech. Mater. 45, 61–71 (2012)CrossRefGoogle Scholar
  39. 39.
    McMeeking, R.M., Evans, A.G.: Mechanics of transformation—toughening in brittle materials. J. Am. Ceram. Soc. 65, 242–246 (1982)CrossRefGoogle Scholar
  40. 40.
    Lambropoulos, J.C.: Shear, shape and orientation effects in transformation toughening. Int. J. Solids Struct. 22, 1083–1106 (1986)CrossRefGoogle Scholar
  41. 41.
    Ru, C.Q., Batra, R.C.: Toughening due to transformations induced by a crack tip stress field in ferroelastic materials. Int. J. Solids Struct. 32, 3289–3305 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Cui, Y.Q., Yang, W.: Electromechanical cracking in ferroelectrics driven by large scale domain switching. Sci. China Phys. Mech. Astron. 54, 957–965 (2011)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Cui, Y.Q., Zhong, Z.: Large scale domain switching around the tip of an impermeable stationary crack in ferroelectric ceramics driven by near-coercive electric field. Sci. China Phys. Mech. Astron. 54, 121–126 (2011)CrossRefGoogle Scholar
  44. 44.
    Suo, Z.: Singularities, interfaces and cracks in dissimilar anisotropic media. Proc. R. Soc. Lond. A 427, 331–358 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Gao, H., Abbudi, M., Barnett, D.M.: Interfacial crack-tip field in anisotropic elastic solids. J. Mech. Phys. Solids 40, 393–416 (1992)CrossRefzbMATHGoogle Scholar
  46. 46.
    Parton, V.Z.: Fracture mechanics of piezoelectric materials. Acta Astron. 3, 671–683 (1976)CrossRefzbMATHGoogle Scholar
  47. 47.
    Wang, B.L., Han, J.C.: Discussion on electromagnetic crack face boundary conditions for the fracture mechanics of magneto-electro-elastic materials. Acta Mech. Sin. 22, 233–242 (2006)Google Scholar
  48. 48.
    Hwang, S.C., Lynch, C.S., McMeeking, R.M.: Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall. Mater. 43, 2073–2084 (1995)CrossRefGoogle Scholar
  49. 49.
    Jiang, B., Bai, Y., Chu, W.Y., et al.: Direct observation of two 90 steps of 180 domain switching in \({\rm BaTiO}_{3}\) single crystal under an antiparallel electric field. Appl. Phys. Lett. 93, 152905 (2008)CrossRefGoogle Scholar
  50. 50.
    Yang, W., Fang, F., Tao, M.: Critical role of domain switching on the fracture toughness of poled ferroelectrics. Int. J. Solids Struct. 38, 2203–2211 (2001)CrossRefzbMATHGoogle Scholar
  51. 51.
    Hackemann, S., Pfeiffer, W.: Domain switching in process zones of PZT: characterization by microdiffraction and fracture mechanical methods. J. Eur. Ceram. Soc. 23, 141–151 (2003)CrossRefGoogle Scholar
  52. 52.
    Cui, Y.Q., Yang, W.: Toughening under non-uniform ferro-elastic domain switching. Int. J. Solids Struct. 43, 4452–4464 (2006)CrossRefzbMATHGoogle Scholar
  53. 53.
    Cui, Y.Q., Zhong, Z.: Nonuniform ferroelastic domain switching driven by two-parameter crack tip stress field. Eng. Fract. Mech. 96, 226–240 (2012)CrossRefGoogle Scholar
  54. 54.
    Jiang, Y.J., Fang, D.N., Li, F.X.: In situ observation of electric-field-induced domain switching near a crack tip in poled \(0.62{\rm PbMg}_{1/3}{\rm Nb}_{2/3}{\rm O}_{3}\)-\(0.38{\rm PbTiO}_{3}\) single crystal. Appl. Phys. Lett. 90, 222907 (2007)CrossRefGoogle Scholar
  55. 55.
    Gao, H.: Weight function method for interface cracks in anisotropic bimaterials. Int. J. Fract. 56, 139–158 (1992)CrossRefGoogle Scholar
  56. 56.
    Kolleck, A., Schneider, G., Meschke, F.: R-curve behavior of \({\rm BaTiO}_{3}\) and PZT ceramics under the influence of an electric field applied parallel to the crack front. Acta Mater. 48, 4099–4113 (2000)CrossRefGoogle Scholar
  57. 57.
    Zhou, D., Kamlah, M.: Room-temperature creep of soft PZT under static electrical and compressive stress loading. Acta Mater. 54, 1389–1396 (2006)CrossRefGoogle Scholar
  58. 58.
    Wang, J., Zhang, T.Y.: Phase field simulations of polarization switching-induced toughening in ferroelectric ceramics. Acta Mater. 55, 2465–2477 (2007)CrossRefGoogle Scholar
  59. 59.
    Abdollahi, A., Arias, I.: Phase-field modeling of the coupled microstructure and fracture evolution in ferroelectric single crystals. Acta Mater. 59, 4733–4746 (2011)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Aerospace Engineering and Applied MechanicsTongji UniversityShanghaiChina

Personalised recommendations