Advertisement

Acta Mechanica Sinica

, Volume 32, Issue 5, pp 813–827 | Cite as

Stress analysis of thermally affected rotating nanoshafts with varying material properties

  • Keivan Kiani
Research Paper

Abstract

Based on the surface elasticity theory of Gurtin-Murdoch, thermo-elastic fields within rotating nanoshafts with varying material properties subjected to a thermal field are explicitly examined. Accounting for the surface energy effect, the nonclassical boundary conditions are enforced in the cases of fixed-free and free-free conditions. The effects of variation of material properties, temperature of the environment, angular velocity, and radius of the outer radius on the radial displacement, hoop and radial stresses are investigated. In all performed studies, the role of the surface effect on the thermo-elastic field of the nanostructure is methodically discussed.

Keywords

Rotating nanoshaft Thermo-elastic field Surface energy effect Non-classical boundary conditions Analytical modeling 

References

  1. 1.
    Maruo, S., Ikuta, K., Korogi, H.: Submicron manipulation tools driven by light in a liquid. Appl. Phys. Lett. 82, 133–135 (2003)CrossRefGoogle Scholar
  2. 2.
    Khan, M., Sood, A.K., Deepak, F.L., et al.: Nanorotors using asymmetric inorganic nanorods in an optical trap. Nanotechnology 17, S287 (2006)CrossRefGoogle Scholar
  3. 3.
    Stockman, M.I., Li, K., Brasselet, S., et al.: Octupolar metal nanoparticles as optically driven, coherently controlled nanorotors. Chem. Phys. Lett. 433, 130–135 (2006)CrossRefGoogle Scholar
  4. 4.
    Tong, L., Miljkovic, V.D., Käll, M.: Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett. 10, 268–273 (2009)CrossRefGoogle Scholar
  5. 5.
    Jones, P.H., Palmisano, F., Bonaccorso, F., et al.: Rotation detection in light-driven nanorotors. ACS Nano 3, 3077–3084 (2009)CrossRefGoogle Scholar
  6. 6.
    Maruo, S., Inoue, H.: Optically driven micropump produced by three-dimensional two-photon microfabrication. Appl. Phys. Lett. 89, 144101 (2006)CrossRefGoogle Scholar
  7. 7.
    Lin, C.L., Vitrant, G., Bouriau, M., et al.: Optically driven Archimedes micro-screws for micropump application. Opt. Exp. 19, 8267–8276 (2011)CrossRefGoogle Scholar
  8. 8.
    Lin, C.L., Wang, I., Dollet, B., et al.: Velocimetry microsensors driven by linearly polarized optical tweezers. Opt. Lett. 31, 329–331 (2006)CrossRefGoogle Scholar
  9. 9.
    Bonin, K., Kourmanov, B., Walker, T.: Light torque nanocontrol, nanomotors and nanorockers. Opt. Exp. 10, 984–989 (2002)CrossRefGoogle Scholar
  10. 10.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gurtin, M.E., Murdoch, A.I.: Effect of surface stress on wave propagation in solids. J. Appl. Phys. 47, 4414–4421 (1976)CrossRefGoogle Scholar
  12. 12.
    Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)CrossRefzbMATHGoogle Scholar
  13. 13.
    Shenoy, V.B.: Size-dependent rigidities of nanosized torsional elements. Int. J. Solids Struct. 39, 4039–4052 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)CrossRefGoogle Scholar
  15. 15.
    He, J., Lilley, C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798–1802 (2008)CrossRefGoogle Scholar
  16. 16.
    He, J., Lilley, C.M.: Surface stress effect on bending resonance of nanowires with different boundary conditions. Appl. Phys. Lett. 93, 263108 (2008)CrossRefGoogle Scholar
  17. 17.
    Gao, F., Cheng, Q., Luo, J.: Mechanics of nanowire buckling on elastomeric substrates with consideration of surface stress effects. Phys. E 64, 72–77 (2014)CrossRefGoogle Scholar
  18. 18.
    Kiani, K.: Forced vibrations of a current-carrying nanowire in a longitudinal magnetic field accounting for both surface energy and size effects. Phys. E 63, 27–35 (2014)CrossRefGoogle Scholar
  19. 19.
    Kiani, K.: Surface effect on free transverse vibration and dynamic instability of current-carrying nanowires in the presence of a longitudinal magnetic field. Phys. Lett. A 378, 1834–1840 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kiani, K.: Column buckling of magnetically affected nanowires carrying electric current. J. Phys. Chem. Solids 83, 140–151 (2015)CrossRefGoogle Scholar
  21. 21.
    Kiani, K.: Stability and vibrations of doubly parallel current-carrying nanowires immersed in a longitudinal magnetic field. Phys. Lett. A 379, 348–360 (2015)CrossRefGoogle Scholar
  22. 22.
    Kiani, K.: Axial buckling analysis of a slender current-carrying nanowire acted upon by a longitudinal magnetic field. J. Phys. D Appl. Phys. 48, 245302 (2015)CrossRefGoogle Scholar
  23. 23.
    Kiani, K.: Vibrations and instability of pretensioned current-carrying nanowires acted upon by a suddenly applied three-dimensional magnetic field. Mater. Chem. Phys. 162, 531–541 (2015)CrossRefGoogle Scholar
  24. 24.
    Song, F., Huang, G.L.: Modeling of surface stress effects on bending behavior of nanowires: Incremental deformation theory. Phys. Lett. A 373, 3969–3973 (2009)CrossRefzbMATHGoogle Scholar
  25. 25.
    Wang, Y., Wang, Z.Q., Lv, J.G.: Size-dependent thermal buckling of heated nanowires with ends axially restrained. Phys. Lett. A 378, 899–903 (2014)CrossRefzbMATHGoogle Scholar
  26. 26.
    Liu, J.L., Mei, Y., Xia, R., et al.: Large displacement of a static bending nanowire with surface effects. Phys. E 44, 2050–2055 (2012)CrossRefGoogle Scholar
  27. 27.
    Wang, G.F., Feng, X.Q.: Surface effects on buckling of nanowires under uniaxial compression. Appl. Phys. Lett. 94, 141913 (2009)CrossRefGoogle Scholar
  28. 28.
    Wang, G.F., Feng, X.Q.: Timoshenko beam model for buckling and vibration of nanowires with surface effects. J. Phys. D Appl. Phys. 42, 155411 (2009)CrossRefGoogle Scholar
  29. 29.
    Park, H.S., Klein, P.A.: Surface stress effects on the resonant properties of metal nanowires: the importance of finite deformation kinematics and the impact of the residual surface stress. J. Mech. Phys. Solids 56, 3144–3166 (2008)CrossRefzbMATHGoogle Scholar
  30. 30.
    Gordon, M.J., Baron, T., Dhalluin, F., et al.: Size effects in mechanical deformation and fracture of cantilevered silicon nanowires. Nano Lett. 9, 525–529 (2009)CrossRefGoogle Scholar
  31. 31.
    Guo, J.G., Zhao, Y.P.: The size-dependent bending elastic properties of nanobeams with surface effects. Nanotechnology 18, 295701 (2007)CrossRefGoogle Scholar
  32. 32.
    Fu, Y., Zhang, J.: Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies. Appl. Math. Model. 35, 941–951 (2011)MathSciNetCrossRefGoogle Scholar
  33. 33.
    On, B.B., Altus, E., Tadmor, E.B.: Surface effects in non-uniform nanobeams: continuum vs. atomistic modeling. Int. J. Solids Struct. 47, 1243–1252 (2010)CrossRefzbMATHGoogle Scholar
  34. 34.
    Gheshlaghi, B., Hasheminejad, S.M.: Surface effects on nonlinear free vibration of nanobeams. Compos. Part B Eng. 42, 934–937 (2011)CrossRefGoogle Scholar
  35. 35.
    Fu, Y., Zhang, J., Jiang, Y.: Influences of the surface energies on the nonlinear static and dynamic behaviors of nanobeams. Phys. E 42, 2268–2273 (2010)CrossRefGoogle Scholar
  36. 36.
    Hasheminejad, S.M., Gheshlaghi, B., Mirzaei, Y., et al.: Free transverse vibrations of cracked nanobeams with surface effects. Thin Solid Films 519, 2477–2482 (2011)CrossRefGoogle Scholar
  37. 37.
    Malekzadeh, P., Shojaee, M.: Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams. Compos. Part B Eng. 52, 84–92 (2013)CrossRefGoogle Scholar
  38. 38.
    Eltaher, M.A., Mahmoud, F.F., Assie, A.E., et al.: Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams. Appl. Math. Comp. 224, 760–774 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Hosseini-Hashemi, S., Nazemnezhad, R.: An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos. Part B Eng. 52, 199–206 (2013)CrossRefGoogle Scholar
  40. 40.
    Ansari, R., Sahmani, S.: Surface stress effects on the free vibration behavior of nanoplates. Int. J. Eng. Sci. 49, 1204–1215 (2011)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zang, J., Fang, B., Zhang, Y.W., et al.: Longitudinal wave propagation in a piezoelectric nanoplate considering surface effects and nonlocal elasticity theory. Phys. E 63, 147–150 (2014)CrossRefGoogle Scholar
  42. 42.
    Asemi, S.R., Farajpour, A.: Thermo-electro-mechanical vibration of coupled piezoelectric-nanoplate systems under non-uniform voltage distribution embedded in Pasternak elastic medium. Curr. Appl. Phys. 14, 814–832 (2014)CrossRefGoogle Scholar
  43. 43.
    Mouloodi, S., Khojasteh, J., Salehi, M., et al.: Size dependent free vibration analysis of multicrystalline nanoplates by considering surface effects as well as interface region. Int. J. Mech. Sci. 85, 160–167 (2014)CrossRefGoogle Scholar
  44. 44.
    Ansari, R., Ashrafi, M.A., Pourashraf, T., et al.: Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory. Acta Astronaut. 109, 42–51 (2015)CrossRefGoogle Scholar
  45. 45.
    Zhang, L.L., Liu, J.X., Fang, X.Q., et al.: Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates. Eur. J. Mech. A Solid 46, 22–29 (2014)CrossRefGoogle Scholar
  46. 46.
    Wang, L.: Vibration analysis of fluid-conveying nanotubes with consideration of surface effects. Phys. E 43, 437–439 (2010)CrossRefGoogle Scholar
  47. 47.
    Lei, X.W., Natsuki, T., Shi, J.X., et al.: Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model. Compos. Part B Eng. 43, 64–69 (2012)CrossRefGoogle Scholar
  48. 48.
    Lee, H.L., Chang, W.J.: Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory. J. Appl. Phys. 108, 093503 (2010)CrossRefGoogle Scholar
  49. 49.
    Farshi, B., Assadi, A., Alinia-ziazi, A.: Frequency analysis of nanotubes with consideration of surface effects. Appl. Phys. Lett. 96, 093105 (2010)CrossRefGoogle Scholar
  50. 50.
    Arani, A.G., Roudbari, M.A.: Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle. Thin Solid Films 542, 232–241 (2013)CrossRefGoogle Scholar
  51. 51.
    Peng, X.L., Huang, G.Y.: Elastic vibrations of a cylindrical nanotube with the effect of surface stress and surface inertia. Phys. E 54, 98–102 (2013)CrossRefGoogle Scholar
  52. 52.
    Ru, C.Q.: Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions. Sci. China Phys. Mech. Astron. 53, 536–544 (2010)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Kim, C.I., Schiavone, P., Ru, C.Q.: Analysis of plane-strain crack problems (mode-I and mode-II) in the presence of surface elasticity. J. Elast. 104, 397–420 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Durodola, J.F., Attia, O.: Deformation and stresses in functionally graded rotating disks. Compos. Sci. Technol. 60, 987–995 (2000)CrossRefGoogle Scholar
  55. 55.
    Bayat, M., Saleem, M., Sahari, B.B., et al.: Analysis of functionally graded rotating disks with variable thickness. Mech. Res. Commun. 35, 283–309 (2008)CrossRefzbMATHGoogle Scholar
  56. 56.
    Vel, S.S., Batra, R.C.: Exact solution for thermoelastic deformations of functionally graded thick rectangular plates. AIAA J. 40, 1421–1433 (2002)CrossRefGoogle Scholar
  57. 57.
    Horgan, C.O., Chan, A.M.: The stress response of functionally graded isotropic linearly elastic rotating disks. J. Elast. 55, 219–230 (1999)Google Scholar
  58. 58.
    Nie, G.J., Batra, R.C.: Stress analysis and material tailoring in isotropic linear thermoelastic incompressible functionally graded rotating disks of variable thickness. Compos. Struct. 92, 720–729 (2010)Google Scholar
  59. 59.
    Singh, S.B., Ray, S.: Steady-state creep behavior in an isotropic functionally graded material rotating disc of Al-SiC composite. Metall. Mater. Trans. A 32, 1679–1685 (2001)CrossRefGoogle Scholar
  60. 60.
    Shahzamanian, M.M., Sahari, B.B., Bayat, M., et al.: Finite element analysis of thermoelastic contact problem in functionally graded axisymmetric brake disks. Compos. Struct. 92, 1591–1602 (2010)CrossRefGoogle Scholar
  61. 61.
    Dong, C.Y.: Three-dimensional free vibration analysis of functionally graded annular plates using the Chebyshev-Ritz method. Mater. Des. 29, 1518–1525 (2008)CrossRefGoogle Scholar
  62. 62.
    Peng, X.L., Li, X.F.: Thermal stress in rotating functionally graded hollow circular disks. Compos. Struct. 92, 1896–1904 (2010)CrossRefGoogle Scholar
  63. 63.
    Wang, Z.Q., Zhao, Y.P., Huang, Z.P.: The effects of surface tension on the elastic properties of nano structures. Int. J. Eng. Sci. 48, 140–150 (2010)CrossRefGoogle Scholar
  64. 64.
    Wang, Z.Q., Zhao, Y.P.: Thermo-hyperelastic models for nanostructured materials. Sci. China Phys. Mech. Astron. 54, 948–956 (2011)CrossRefGoogle Scholar
  65. 65.
    Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139 (2000)CrossRefGoogle Scholar
  66. 66.
    Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104 (2005)CrossRefGoogle Scholar
  67. 67.
    Liu, C., Rajapakse, R.K.N.D., Phani, A.S.: Finite element modeling of beams with surface energy effects. J. Appl. Mech. 78, 031014 (2011)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Civil EngineeringK.N. Toosi University of TechnologyTehranIran

Personalised recommendations