Acta Mechanica Sinica

, Volume 31, Issue 3, pp 275–291 | Cite as

Recent progress in compressible turbulence

  • Shiyi Chen
  • Zhenhua Xia
  • Jianchun Wang
  • Yantao Yang
research paper

Abstract

In this paper, we review some recent studies on compressible turbulence conducted by the authors’ group, which include fundamental studies on compressible isotropic turbulence (CIT) and applied studies on developing a constrained large eddy simulation (CLES) for wall-bounded turbulence. In the first part, we begin with a newly proposed hybrid compact–weighted essentially nonoscillatory (WENO) scheme for a CIT simulation that has been used to construct a systematic database of CIT. Using this database various fundamental properties of compressible turbulence have been examined, including the statistics and scaling of compressible modes, the shocklet–turbulence interaction, the effect of local compressibility on small scales, the kinetic energy cascade, and some preliminary results from a Lagrangian point of view. In the second part, the idea and formulas of the CLES are reviewed, followed by the validations of CLES and some applications in compressible engineering problems.

Graphical Abstract

This paper reviews some recent research on compressible turbulence from the authors’ group, including fundamental studies on compressible isotropic turbulence (left) and applied studies on developing a constrained large eddy simulation method for wall-bounded turbulence (right). These topics are two of the main directions in current turbulence research, and our results, which are new and important, fill gaps in the relevant area.

Keywords

Compressible turbulence Hybrid compact–WENO scheme  Compressibility effect Lagrangian study Constrained large eddy simulation 

References

  1. 1.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)MATHCrossRefGoogle Scholar
  2. 2.
    Wang, J., Wang, L.P., Xiao, Z., et al.: A hybrid approach for direct numerical simulation of isotropic compressible turbulence. J. Comp. Phys. 229, 5257–5279 (2010)MATHCrossRefGoogle Scholar
  3. 3.
    Wang, J., Shi, Y., Wang, L.P., et al.: Scaling and statistics in three-dimensional compressible turbulence. Phys. Rev. Lett. 108, 214505 (2012)CrossRefGoogle Scholar
  4. 4.
    Wang, J., Shi, Y., Wang, L.P., et al.: Effect of shocklets on the velocity gradients in highly-compressible isotropic turbulence. Phys. Fluids 23, 125103 (2011)CrossRefGoogle Scholar
  5. 5.
    Wang, J., Shi, Y., Wang, L.P., et al.: Effect of compressibility on the small scale structures in isotropic turbulence. J. Fluid Mech. 713, 588–631 (2012)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Wang, J.C., Yang, Y.T., Shi, Y.P., et al.: Cascade of kinetic energy in three-dimensional compressible turbulence. Phys. Rev. Lett. 110, 214505 (2013)CrossRefGoogle Scholar
  7. 7.
    Yang, Y.T., Wang, J.C., Shi, Y.P., et al.: Acceleration of passive tracers in compressible turbulent flow. Phys. Rev. Lett. 110, 064503 (2013)CrossRefGoogle Scholar
  8. 8.
    Yang, Y.T., Wang, J.C., Shi, Y.P., et al.: Interactions between inertial particles and shocklets in compressible turbulent flow. Phys. Fluids. 26, 091702 (2014)CrossRefGoogle Scholar
  9. 9.
    Shi, Y.P., Xiao, Z.L., Chen, S.Y.: Constrained subgrid-scale stress model for large eddy simulation. Phys. Fluids 20, 011701 (2008)CrossRefGoogle Scholar
  10. 10.
    Chen, S.Y., Xia, Z.H., Pei, S.Y., et al.: Reynolds-stress-constrained large eddy simulation of wall bounded turbulent flows. J. Fluid Mech. 703, 1–28 (2012)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Chen, S.Y., Shi, Y.P., Xiao, Z.L., et al.: Constrained large eddy simulation of wall-bounded turbulent flows. In: Fu, S. et al. eds. Progress in Hybrid RANS-LES Modelling, NNFM 117, 121–130 (2012)Google Scholar
  12. 12.
    Xia, Z.H., Shi, Y.P., Hong, R.K., et al.: Constrained large-eddy simulation of separated flows in a channel with streamwise-periodic constrictions. J. Turbul. 14, 1–21 (2013)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Chen, S.Y., Wang, M.R., Xia, Z.H.: Multiscale fluid mechanics and modeling. Procedia IUTAM. (in Press) (2013)Google Scholar
  14. 14.
    Chen, S.Y., Chen, Y.C., Xia, Z.H., et al.: Constrained large-eddy simulation and detached eddy simulation of flow past a commercial aircraft at 14 degrees angle of attack. Sci. China Ser. G 56, 270–276 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jiang, Z., Xiao, Z.L., Shi, Y.P., et al.: Constrained large-eddy simulation of wall-bounded compressible turbulent flows. Phys. Fluids 25, 106102 (2013)CrossRefGoogle Scholar
  16. 16.
    Hong, R.K., Xia, Z.H., Shi, Y.P., et al.: Constrained large-eddy simulation of compressible flow past a circular cylinder. Commun. Comput. Phys. 15, 388–421 (2013)MathSciNetGoogle Scholar
  17. 17.
    Zhao, Y.M., Xia, Z.H., Shi, Y.P., et al.: Constrained large-eddy simulation of laminar-turbulent transition in channel flow. Phys. Fluids 26, 095103 (2014)CrossRefGoogle Scholar
  18. 18.
    Adams, N.A., Shariff, K.: A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J. Comp. Phys. 127, 27–51 (1996)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J. Comp. Phys. 178, 81–117 (2002)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Ren, Y.X., Liu, M., Zhang, H.: A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J. Comp. Phys. 192, 365–386 (2003)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhou, Q., Yao, Z., He, F., et al.: A new family of high-order compact upwind difference schemes with good spectral resolution. J. Comp. Phys. 227, 1306–1339 (2007)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Balsara, D.S., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comp. Phys. 160, 405–452 (2000)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comp. Phys. 103, 16–42 (1992)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Sagaut, P., Cambon, C.: Homogeneous Turbulence Dynamics. Cambridge University Press, Cambridge (2008)MATHCrossRefGoogle Scholar
  25. 25.
    She, Z.S., Lévêque, E.: Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336–339 (1994)CrossRefGoogle Scholar
  26. 26.
    Benzi, R., Biferale, L., Fisher, R.T., et al.: Intermittency and universality in fully developed inviscid and weakly compressible turbulent flows. Phys. Rev. Lett. 100, 234503 (2008)CrossRefGoogle Scholar
  27. 27.
    Bec, J., Khanin, K.: Burgers turbulence. Phys. Rep. 447, 1–66 (2007)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lee, S., Lele, S., Moin, P.: Eddy shocklets in decaying compressible turbulence. Phys. Fluids A 3, 657–664 (1991)CrossRefGoogle Scholar
  29. 29.
    Samtaney, R., Pullin, D.I., Kosovic, B.: Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids 13, 1415–1430 (2001)CrossRefGoogle Scholar
  30. 30.
    Larsson, J., Lele, S.K.: Direct numerical simulation of canonical shock/turbulence interaction. Phys. Fluids 21, 126101 (2009)CrossRefGoogle Scholar
  31. 31.
    Meneveau, C.: Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech. 43, 219–245 (2011)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Ashurst, W.T., Kerstein, A.R., Kerr, R.M., et al.: Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Phys. Fluids 30, 2343–2353 (1987)CrossRefGoogle Scholar
  33. 33.
    Chong, M.S., Perry, A.E., Cantwell, B.J.: A general classification of three-dimensional flow fields. Phys. Fluids A 2, 765–777 (1990)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Pirozzoli, S., Grasso, F.: Direct numerical simulations of isotropic compressible turbulence: influence of compressibility on dynamics and structures. Phys. Fluids 16, 4386–4407 (2004)CrossRefGoogle Scholar
  35. 35.
    Suman, S., Girimaji, S.S.: Velocity gradient invariants and local flow-field topology in compressible turbulence. J. of Turbul. 11, 1–24 (2010)CrossRefGoogle Scholar
  36. 36.
    Erlebacher, G., Sarkar, S.: Statistical analysis of the rate of strain tensor in compressible homogeneous turbulence. Phys. Fluids A 5, 3240–3254 (1993)MATHCrossRefGoogle Scholar
  37. 37.
    Armstrong, J.W., Rickett, B.J., Spangler, S.R.: Electron density power spectrum in the local interstellar medium. Astrophys. J. 443, 209–221 (1995)CrossRefGoogle Scholar
  38. 38.
    Xu, H., Li, H., Collins, D.C., et al.: Evolution and distribution magnetic fields from active galactic nuclei in galaxy cluster. I. the effect of injection energy and redshift. Astrophys. J. 725, 2152–2165 (2010)CrossRefGoogle Scholar
  39. 39.
    Kritsuk, A.G., Norman, M.L., Padoan, P., et al.: The statistics of supersonic isothermal turbulence. Astrophys. J. 665, 416–431 (2007)CrossRefGoogle Scholar
  40. 40.
    Aluie, H.: Compressible turbulence: The cascade and its locality. Phys. Rev. Lett. 106, 174502 (2011)CrossRefGoogle Scholar
  41. 41.
    Aluie, H., Li, S., Li, H.: Conservative cascade of kinetic energy in compressible turbulence. Astrophys. J. Lett. 751, L29 (2012)CrossRefGoogle Scholar
  42. 42.
    Miura, H., Kida, S.: Acoustic energy exchange in compressible turbulence. Phys. Fluids 7, 1732–1742 (1995)MATHCrossRefGoogle Scholar
  43. 43.
    Chen, Q., Chen, S., Eyink, G., et al.: Intermittency in the joint cascade of energy and helicity. Phys. Rev. Lett. 90, 214503 (2003)CrossRefGoogle Scholar
  44. 44.
    Yeung, P.K.: Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34, 115–142 (2002)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Toschi, F., Bodenschatz, E.: Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375–404 (2009)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Salazar, J.P.L.C., Collins, L.R.: Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech. 41, 405–432 (2009)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Sreenivasan, K.R., Schumacher, J.: Lagrangian views on turbulent mixing of passive scalars. Phil. Trans. R. Soc. A 368, 1561–1577 (2010)MATHMathSciNetCrossRefGoogle Scholar
  48. 48.
    Parmar, M., Haselbacher, A., Balachandar, S.: Equation of motion for a sphere in non-uniform compressible flows. J. Fluid Mech. 699, 352–375 (2012)MATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    La Porta, A., Voth, G.A., Crawford, A.M., et al.: Fluid particle accelerations in fully developed turbulence. Nature 409, 1017–1019 (2001)CrossRefGoogle Scholar
  50. 50.
    Toschi, F., Biferale, L., Boffetta, G., et al.: Acceleration and vortex filaments in turbulence. J. Turbul. 6, N15 (2005)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Reynolds, A.M., Mordant, N., Crawford, A.M., et al.: On the distribution of Lagrangian accelerations in turbulent flows. New J. Phys. 7, 58 (2005)CrossRefGoogle Scholar
  52. 52.
    Mordant, N., Crawford, A.M., Bodenschatz, E.: Three-dimensional structure of the Lagrangian acceleration in turbulent flows. Phys. Rev. Lett. 93, 214501 (2004)CrossRefGoogle Scholar
  53. 53.
    Chapman, D.A.: Computational aerodynamics development and outlook. AIAA J. 17, 1293–1313 (1979)Google Scholar
  54. 54.
    Piomelli, U., Balaras, E.: Wall-layer models for large-eddy simulation. Annu. Rev. Fluid Mech. 34, 349–374 (2002)Google Scholar
  55. 55.
    Piomelli, U.: Wall-layer models for large-eddy simulation. Prog. Aerosp. Sci. 44, 437–446 (2008)CrossRefGoogle Scholar
  56. 56.
    Fröhlich, J., von Terzi, D.: Hybrid LES/RANS methods for the simulation of the turbulent flows. Prog. Aerosp. Sci. 44, 349–377 (2008)CrossRefGoogle Scholar
  57. 57.
    Spalart, P.: Detached eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)CrossRefGoogle Scholar
  58. 58.
    Nikitin, N.V., Nicoud, F., Wasistho, B., et al.: An approach to wall modeling in large-eddy simulations. Phys. Fluids 12, 1629–1632 (2000)CrossRefGoogle Scholar
  59. 59.
    Kraichnan, R.H.: Decimated amplitude equations in turbulence dynamics. In: Dwoyer, D.L., Hussaini, M.Y., Vogit, R.G. (eds.) Theoretical approaches to turbulence, pp. 91–135. Springer, New York (1985)CrossRefGoogle Scholar
  60. 60.
    Kraichnan, R.H., Chen, S.Y.: Is there a statistical mechanics of turbulence? Phys. D. 37, 160–172 (1989)MATHMathSciNetCrossRefGoogle Scholar
  61. 61.
    Ghosal, S., Lund, T.S., Moin, P., et al.: A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluids Mech. 286, 229–255 (1995)MATHMathSciNetCrossRefGoogle Scholar
  62. 62.
    Coleman, G.N., Kim, J., Moser, R.D.: A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid. Mech. 305, 159–183 (1995)MATHCrossRefGoogle Scholar
  63. 63.
    Brun, C., Boiarciuc, M.P., Haberkorn, M., et al.: Large eddy simulation of compressible channel flow. Theor. Comput. Fluid Dyn. 22, 189–212 (2008)MATHCrossRefGoogle Scholar
  64. 64.
    Xu, C.Y., Chen, L.W., Lu, X.Y.: Large-eddy simulation of the compressible flow past a wavy cylinder. J. Fluid Mech. 665, 238–273 (2010)MATHCrossRefGoogle Scholar
  65. 65.
    Rodriguez, O.: The circular cylinder in subsonic and transonic flow. AIAA J. 22, 1713–1718 (1984)CrossRefGoogle Scholar
  66. 66.
    Murthy, V.S., Rose, W.C.: Detailed measurements on a circular cylinder in cross flow. AIAA J. 16, 549–550 (1978)CrossRefGoogle Scholar
  67. 67.
    Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. Rech. Aerosp. 1, 5–21 (1994)Google Scholar
  68. 68.
    Breuer, M., Peller, N., Rapp, C., et al.: Flow over periodic hills-numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids 38, 433–457 (2009)MATHCrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Shiyi Chen
    • 1
  • Zhenhua Xia
    • 1
  • Jianchun Wang
    • 1
  • Yantao Yang
    • 1
    • 2
  1. 1.State Key Laboratory for Turbulence and Complex Systems, Center for Applied Physics and Technology, College of EngineeringPeking UniversityBeijingChina
  2. 2.Physics of Fluids Group, Faculty of Science and Technology, MESA+ Research Institute, and J. M. Burgers Centre for Fluid DynamicsUniversity of TwenteAE EnschedeThe Netherlands

Personalised recommendations