Advertisement

Acta Mechanica Sinica

, Volume 30, Issue 2, pp 167–174 | Cite as

Quantitative assessment of the surface crack density in thermal barrier coatings

  • Li YangEmail author
  • Zhi-Chun Zhong
  • Yi-Chun ZhouEmail author
  • Chun-Sheng Lu
Research Paper Solid Mechanics

Abstract

In this paper, a modified shear-lag model is developed to calculate the surface crack density in thermal barrier coatings (TBCs). The mechanical properties of TBCs are also measured to quantitatively assess their surface crack density. Acoustic emission (AE) and digital image correlation methods are applied to monitor the surface cracking in TBCs under tensile loading. The results show that the calculated surface crack density from the modified model is in agreement with that obtained from experiments. The surface cracking process of TBCs can be discriminated by their AE characteristics and strain evolution. Based on the correlation of energy released from cracking and its corresponding AE signals, a linear relationship is built up between the surface crack density and AE parameters, with the slope being dependent on the mechanical properties of TBCs.

Keywords

Thermal barrier coatings Acoustic emission Surface crack density Quantitative assessment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Evans, A.G., Mumm, D.R., Hutchinson, J.W., et al.: Mechanisms controlling the durability of thermal barrier coatings. Progress in Materials Science 46, 505–553 (2001)CrossRefGoogle Scholar
  2. 2.
    Padture, N.P., Maurice, G., Eric, H.J.: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280–284 (2002)CrossRefGoogle Scholar
  3. 3.
    Schulz, U., Peters, M., Bach, F.W., et al.: Graded coatings for thermal, wear and corrosion barriers. Materials Science and Engineering A 362, 61–80 (2003)CrossRefGoogle Scholar
  4. 4.
    Cao, X.Q., Vassen, R., Stoever, D.: Ceramic materials for thermal barrier coatings. Journal of the European Ceramic Society 24, 1–10 (2004)CrossRefGoogle Scholar
  5. 5.
    Wright, P.K., Evans, A.G.: Mechanisms governing the performance of thermal barrier coatings. Current Opinion in Solid State and Materials Science 4, 255–265 (1999)CrossRefGoogle Scholar
  6. 6.
    Qian, G., Nakamura, T., Berndt, C.C.: Effects of thermal gradient and residual stresses on thermal barrier coating fracture. Mechanics of Materials 27, 91–110 (1998)CrossRefGoogle Scholar
  7. 7.
    Lesage, J., Chicot, D.: Role of residual stresses on interface toughness of thermally sprayed coatings. Thin Solid Films 415, 143–150 (2002)CrossRefGoogle Scholar
  8. 8.
    Schlichting, K.W., Padture, N.P., Jordan, E.H., et al.: Failure modes in plasma-sprayed thermal barrier coatings. Materials Science and Engineering A 342, 120–130 (2003)CrossRefGoogle Scholar
  9. 9.
    Sfar, K., Aktaa, J., Munz, D., et al.: Numerical investigation of residual stress fields and crack behavior in TBC systems. Materials Science and Engineering A 1–2, 351–360 (2002)CrossRefGoogle Scholar
  10. 10.
    Kim, G.M., Yanar, N.M., Hewitt, E.N., et al.: The effect of the type of thermal exposure on the durability of thermal barrier coatings. Scripta Materialia 46, 489–495 (2002)CrossRefGoogle Scholar
  11. 11.
    Qian, L., Zhu, S., Kagawa, Y., et al.: Tensile damage evolution behavior in plasma-sprayed thermal barrier coating system. Surface and Coatings Technology 173, 178–184 (2003)CrossRefGoogle Scholar
  12. 12.
    Chen, Z.B., Wang, Z.G., Zhu, S.J.: Tensile fracture behavior of thermal barrier coatings on superalloy. Surface and Coatings Technology 205, 3931–3938 (2011)CrossRefGoogle Scholar
  13. 13.
    Jayaraj, B., Vishweswaraiah, S., Desai, V.H., et al.: Electrochemical impedance spectroscopy of thermal barrier coatings as a function of isothermal and cyclic thermal exposure. Surface and Coatings Technology 177–178, 140–158 (2004)CrossRefGoogle Scholar
  14. 14.
    Wang, X., Mumm, D.R., Hutchinson, J.W., et al.: Mechanisms controlling the durability of thermal barrier coatings. Progress in Materials Science 46, 505–553 (2001)CrossRefGoogle Scholar
  15. 15.
    Jordan, D.W., Faber, K.T.: X-ray residual stress analysis of a ceramic thermal barrier coating undergoing thermal cycling. Thin Solid Films 235, 137–141 (1993)CrossRefGoogle Scholar
  16. 16.
    Yang, L., Zhou, Y.C., Lu, C.: Damage evolution and rupture time prediction in thermal barrier coatings subjected to cyclic heating and cooling: An acoustic emission method. Acta Material 59, 6519–6529 (2011)CrossRefGoogle Scholar
  17. 17.
    Fu, L., Khor, K.A., Ng, H.W., et al.: Non-destructive evaluation of plasma sprayed functionally graded thermal barrier coatings. Surface and Coatings Technology 130, 233–239 (2000)CrossRefGoogle Scholar
  18. 18.
    Ma, X.Q., Cho, S., Takemoto, M.: Acoustic emission source analysis of plasma sprayed thermal barrier coatings during four-point bend tests. Surface and Coatings Technology 139, 55–62 (2001)CrossRefGoogle Scholar
  19. 19.
    Kawasaki, A., Watanabe, R.: Thermal fracture behavior of metal/ceramic functionall graded materials. Engineering Fracture Mechanics 69, 1713–1728 (2002)CrossRefGoogle Scholar
  20. 20.
    Kucuk, A., Berndt, C.C., Senturk, U., et al.: Influence of plasma spray parameters on mechanical properties of yttria stabilized zirconia coatings. II: Acoustic emission response. Materials Science and Engineering A 284, 41–50 (2000)CrossRefGoogle Scholar
  21. 21.
    Yao, W.B., Dai, C.Y., Mao, W.G., et al.: Acoustic emission analysis on tensilefailure of air plasma-sprayed thermal barrier coatings. Surface and Coatings Technology 206, 3803–3807 (2012)CrossRefGoogle Scholar
  22. 22.
    Carpinteri, A., Corrado, M., Lacidogna, G.: Three different approaches for damage domain characterization in disordered materials: Fractal energy density, b-value statistics, renormalization group theory. Mechanics of Materials 53, 15–28 (2012)CrossRefGoogle Scholar
  23. 23.
    Landis, E.N.: Micro-macro fracture relationships and acoustic emissions in concrete. Construction and BuildingMaterials 13, 65–72 (1999)Google Scholar
  24. 24.
    Lu, C., Mai, Y.W., Shen, Y.G.: Optimum information in crackling noise. Physical Review E 72, 027101 (2005)CrossRefGoogle Scholar
  25. 25.
    Sause, M.G.R., Haider, F., Horn, S.: Quantification of metallic coating failure on carbon fiber reinforced plastics using acoustic emission. Surface and Coatings Technology 204, 300–308 (2009)CrossRefGoogle Scholar
  26. 26.
    McGuigan, A.P., Briggs, G.A.D., Burlakov, V.M., et al.: An elastic-plastic shear lag model for fracture of layered coatings. Thin Solid Films 424, 219–223 (2003)CrossRefGoogle Scholar
  27. 27.
    Aktaa, J., Sfar, K., Munz, D.: Assessment of TBC systems failure mechanisms using a fracture mechanics approach. Acta Materialia 53, 4399–4413 (2005)CrossRefGoogle Scholar
  28. 28.
    Nusair Khan, A., Lu, J., Liao, H.: Effect of residual stresses on air plasma sprayed thermal barrier coatings. Surface and Coatings Technology 168, 291–299 (2003)CrossRefGoogle Scholar
  29. 29.
    Wu, D.J., Mao, W.G., Zhou, Y.C., et al.: Digital image correlation approach to cracking and decohesion in a brittle coating/ductile substrate system. Applied Surface Science 257, 6040–6043 (2011)CrossRefGoogle Scholar
  30. 30.
    Moskal, G.: Criteria of assessment of powders provided to spray by the APS method for new and conventional layers type TBC. Archives of Materials Science and Engineering 37, 29–36 (2009)Google Scholar
  31. 31.
    Marshall, D.B., Lawn, B.R.: Residual stress effects in sharp contact cracking. Journal of Materials Science 14, 2001–2011 (1979)CrossRefGoogle Scholar
  32. 32.
    Vasinonta, A., Beuth, J.L.: Measurement of interfacial toughness in thermal barrier coating systems by indentation. Engineering Fracture Mechanics 68, 843–860 (2001)CrossRefGoogle Scholar
  33. 33.
    Kwon, J.Y., Kim, J.H., Lee, S.Y., et al.: Microstructural evolution and residual stresses of air-plasma sprayed thermal barrier coatings under thermal exposure. Surface Review and Letters 17, 337–343 (2010)CrossRefGoogle Scholar
  34. 34.
    Xu, Z.H., Yang, Y., Huang, P., et al.: Determination of interfacial properties of thermal barrier coatings by shear test and inverse finite element method. Acta Materialia 58, 5972–5979 (2010)CrossRefGoogle Scholar
  35. 35.
    Scardi, P., Leoni, M., Bertamini, L.: Influence of phase stability on the residual stress in partially stabilized zirconia TBC produced by plasma spray. Surface and Coatings Technology 76–77, 106–112 (1995)CrossRefGoogle Scholar
  36. 36.
    Teixeira, V., Andritschky, M., Fischer, W., et al.: Effects of deposition temperature and thermal cycling on residual stress state in zirconia-based thermal barrier coatings. Surface and Coatings Technology 120–121, 103–111 (1999)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Key Laboratory of Low Dimensional Materials & Application Technology (Ministry of Education)/Faculty of Materials, Optoelectronic & PhysicsXiangtan UniversityXiangtanChina
  2. 2.Department of Mechanical EngineeringCurtin UniversityPerthAustralia

Personalised recommendations