Acta Mechanica Sinica

, Volume 29, Issue 6, pp 883–892 | Cite as

Effects of cartilaginous rings on airflow and particle transport through simplified and realistic models of human upper respiratory tracts

  • Vivek Kumar Srivastav
  • Akshoy Ranjan Paul
  • Anuj Jain
Research Paper


In the present study, computational fluid dynamics (CFD) is used to investigate inspiratory and expiratory airflow characteristics in the human upper respiratory tract for the purpose of identifying the probable locations of particle deposition and the wall injury. Computed tomography (CT) scan data was used to reconstruct a three dimensional respiratory tract from trachea to first generation bronchi. To compare, a simplified model of respiratory tract based on Weibel was also used in the study. The steady state results are obtained for an airflow rate of 45 L/min, corresponding to the heavy breathing condition. The velocity distribution, wall shear stress, static pressure and particle deposition are compared for inspiratory flows in simplified and realistic models and expiratory flows in realistic model only. The results show that the location of cartilaginous rings is susceptible to wall injury and local particle deposition.


Upper respiratory tract Cartilaginous rings Computational fluid dynamics (CFD) Computed tomography (CT) Wall shear stress Particle deposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fisin, A.B., Dubois, A.B., Richa, W.H.: Evaluation of the forced oscillation technique for the determination of resistance to breathing. Journal of Clinical Investigation 47, 2045–2057 (1968)CrossRefGoogle Scholar
  2. 2.
    Weibel, E.R.: Morphometry of the Human Lung. Academic Press, New York (1963)CrossRefGoogle Scholar
  3. 3.
    Zheng, L., Kleinstreuer, C., Zhang, Z.: Simulation of airflow fields and microparticle deposition in realistic human lung airway models. Part II: Particle transport and deposition. European Journal of Mechanics B/Fluids 26, 650–668 (2007)CrossRefzbMATHGoogle Scholar
  4. 4.
    Srivastav, V.K., Jain, A.: Wall shear stress study of airflow in realistic human airways model: A CFD analysis. In: Advances in Modeling, Optimization and Computing (AMOC-2011). Dec. 5–7, 2011, IIT Roorkee, India, p. 362–367 (2011)Google Scholar
  5. 5.
  6. 6.
    Russo, J., Robinson, R., Oldham, M.J.: Effects of cartilage rings on airflow and particle deposition in the trachea and main bronchi. Medical Engineering & Physics 30, 581–589 (2008)CrossRefGoogle Scholar
  7. 7.
    Luo, H.Y., Liu, Y.: Modeling the bifurcating flow in a CTscanned human lung airway. Journal of Biomechanics 41, 2681–2688 (2008)CrossRefGoogle Scholar
  8. 8.
    Mylavarapu, G., Murugappan, S., Mihaescu, M., et al.: Validation of computational fluid dynamics methodology used for human upper airway flow simulations. Journal of Biomechanics 42, 1553–1559 (2009)CrossRefGoogle Scholar
  9. 9.
    Backer, J.W.D., Vos, W.G., Gorle, C.D., et al.: Flow analyses in the lower airways: Patient-specific model and boundary conditions. Medical Engineering & Physics 30, 872–879 (2008)CrossRefGoogle Scholar
  10. 10.
    Ma, B.S., Utchen, K.R.L.: CFD simulation of aerosol deposition in an anatomically based human large-medium airway model. Annals of Biomedical Engineering 37, 271–285 (2009)CrossRefGoogle Scholar
  11. 11.
    Lambert, A.R., Patrick, O., Shaughnessy, T., et al.: Regional deposition of particles in an image-based airway model: Large-eddy simulation and left-right lung ventilation asymmetry. Aerosol Science and Technology 45, 11–25 (2011)CrossRefGoogle Scholar
  12. 12.
    Srivastav, V.K., Kumar, A., Shukla, S.K., et al.: Airflow and aerosol-drug delivery in a CT scan based human respiratory tract with tumor using CFD. Journal of Applied Fluid Mechanic 7, (2014) (in press)Google Scholar
  13. 13.
    Inthavong, K., Choi, L.T., Tu, J., et al.: Micron particle deposition in a tracheobronchial airway model under different breathing conditions. Medical Engineering & Physics 10, 198–212 (2010)Google Scholar
  14. 14.
    Walters, D.K., Luke, W.H.: Computational fluid dynamics simulations of particle deposition in large-scale, multigenerational lung models. Journal of Biomechanical Engineering 133, 1–8 (2011)CrossRefGoogle Scholar
  15. 15.
    Luo, X.Y., Hinton, J.S., Liew, T.T., et al.: LES modelling of flow in a simple airway model. Medical Engineering & Physics 26, 403–413 (2004)CrossRefGoogle Scholar
  16. 16.
    Kang, M.Y., Hwang, J., Lee, J.W.: Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway. Journal of Biomechanics 44, 1196–1199 (2011)CrossRefGoogle Scholar
  17. 17.
    Gemci, T., Ponyavin, V., Chen, Y., et al.: Computational model of airflow in upper 17 generations of human respiratory tract. Journal of Biomechanics 41, 2047–2054 (2008)CrossRefGoogle Scholar
  18. 18.
    Liu, Y., So, R.M.C., Zhang, C.H.: Modelling the bifurcating flow in a human lung airway. Journal of Biomechanics 35, 465–473 (2002)CrossRefGoogle Scholar
  19. 19.
    Liu, Y., So, R.M.C., Zhang, C.H.: Modeling the bifurcating flow in an asymmetric human lung airway. Journal of Biomechanics 36, 951–959 (2003)CrossRefGoogle Scholar
  20. 20.
    Radhakrishnan, H., Kassinos, S.: CFD modeling of turbulent flow and particle deposition in human lungs. In: Proc. of 31st Annual International Conference of the IEEE EMBS. September 2–6, Minneapolis, Minnesota, USA (2009)Google Scholar
  21. 21.
    Martonen, T.B., Zhang, Z., Yu, G., et al.: Three-dimensional computer modelling of the human upper respiratory tract. Cell Biochemistry and Biophysics 35, 255–261 (2001)CrossRefGoogle Scholar
  22. 22.
    Kleinstreuer, C., Zhang, Z., Zheng, L., et al.: A new methodology for targeting drug-aerosols in the human respiratory system. International Journal of Heat and Mass Transfer 51, 5578–5589 (2008)CrossRefzbMATHGoogle Scholar
  23. 23.
    Nowak, N., Kakade, P.P., Annapragada, A.V.: Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Annals of Biomedical Engineering 31, 374–390 (2003)CrossRefGoogle Scholar
  24. 24.
    Srivastav, V.K., Paul, A.R., Jain, A.: Computational fluid dynamics study of airflow and particle transport in third to sixth generation human respiratory tract. International Journal of Emerging Multidisciplinary Fluid Sciences 4, 227–234 (2011–2012)CrossRefGoogle Scholar
  25. 25.
    Green, A.S.: Modelling of peak-flow wall shear stress in major airways of the lung. Journal of Biomechanics 37, 661–667 (2004)CrossRefGoogle Scholar
  26. 26.
    Lin, C.L., Tawhai, M.H., McLennan, G., et al.: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intrathoracic airways. Respir Physiol Neurobiology 157, 295–309 (2007)CrossRefGoogle Scholar
  27. 27.
    Sulaiman, M.Z.B.: Flow analysis of COPD effects in human airways. [Master Thesis], Faculty of Mechanical Engineering, University Teknologi Malaysia, Malaysia (2008)Google Scholar
  28. 28.
    Koombua, K., Pidaparti, R.M.: Inhalation induced stresses and flow characteristics in human airways through fluid-structure interaction analysis. Modelling and Simulation in Engineering 2008, 358748 (2008)CrossRefGoogle Scholar
  29. 29.
    Nithiarasu, P., Liu, C.B., Massarotti, N.: Laminar and turbulent flow calculations through a model human upper airway using unstructured meshes. Communications in Numerical Methods in Engineering 23, 1057–1069 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Nithiarasu, P., Hassan, O., Morgan, K., et al.: Steady flow through realistic human upper airway geometry. International Journal for Numerical Methods in Fluids 57, 631–651 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Wang, Y., Liu, Y., Sun, X., et al.: Numerical analysis of respiratory flow patterns within human upper airway. Acta. Mech. Sin. 25, 737–746 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Zhao, X.G., Xu, X.X., Tan, SH.L., et al.: Characteristic of gas-solid two-phase flow in the human upper respiratory tract model, In: Proc. IEEE 3rd International Conference on Bioinformatics and Biomedical Engineering (ICBBE-2009), June 11–13 (2009)Google Scholar
  33. 33.
    Chowdhary, R., Singh, V., Tattersfield, A.E., et al.: Relationship of flow and cross-sectional area to frictional stress in airway models of asthma. Journal of Asthma 36, 419–426 (1999)CrossRefGoogle Scholar
  34. 34.
    George, O.: Mechano transduction by vascular smooth muscle. J. Vasc. Res. 32, 275–292 (1995)Google Scholar
  35. 35.
    Srivastav, V.K., Jain, A., Paul, A.R., et al.: CFD modelling of airflow in human respiratory system. In: Proc. of International Conference on Mechanical Engineering, Dhaka, Bangladesh. Dec.18–20, Paper No. ICME-11-FL-009 (2011)Google Scholar
  36. 36.
    Xia, G.U., Merryn Awhai, H.T., Eric, H.A., et al.: Airway wall stiffening increases peak wall shear stress: A fluid-structure interaction study in rigid and compliant airways. Annals of Biomedical Engineering 38, 1836–1853 (2010)CrossRefGoogle Scholar
  37. 37.
    Ansys-Fluent-14, User’s Guide.Google Scholar
  38. 38.
    Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere Pub. Corp., New York (1980)zbMATHGoogle Scholar
  39. 39.
    Salim, M.S., Cheah, S.C.: Wall y+ strategy for dealing with wall-bounded turbulent flows. In: Proceedings of the International Multi Conference of Engineers and Computer Scientists 2009 Vol-II IMECS 2009, March 18–20, Hong Kong (2009)Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vivek Kumar Srivastav
    • 1
  • Akshoy Ranjan Paul
    • 1
  • Anuj Jain
    • 1
  1. 1.Department of Applied MechanicsMotilal Nehru National Institute of TechnologyAllahabadIndia

Personalised recommendations