Advertisement

Acta Mechanica Sinica

, Volume 29, Issue 3, pp 335–347 | Cite as

Optimization of LiMn2O4 electrode properties in a gradient- and surrogate-based framework

  • Wenbo Du
  • Nansi Xue
  • Amit Gupta
  • Ann M. Sastry
  • Joaquim R. R. A. Martins
  • Wei ShyyEmail author
Research Paper

Abstract

In this study, the effects of discharge rate and LiMn2O4 cathode properties (thickness, porosity, particle size, and solid-state diffusivity and conductivity) on the gravimetric energy and power density of a lithium-ion battery cell are analyzed simultaneously using a cell-level model. Surrogate-based analysis tools are applied to simulation data to construct educed-order models, which are in turn used to perform global sensitivity analysis to compare the relative importance of cathode properties. Based on these results, the cell is then optimized for several distinct physical scenarios using gradient-based methods. The complementary nature of the gradient- and surrogate-based tools is demonstrated by establishing proper bounds and constraints with the surrogate model, and then obtaining accurate optimized solutions with the gradient-based optimizer. These optimal solutions enable the quantification of the tradeoffs between energy and power density, and the effect of optimizing the electrode thickness and porosity. In conjunction with known guidelines, the numerical optimization framework developed herein can be applied directly to cell and pack design.

Keywords

Lithium-ion battery Optimization Surrogate modeling Porous electrode model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grasmeyer, J. M., Keennon, M. T.: Development of the black widow micro air vehicle. In: Mueller TJ (ed) Fixed and flapping wing aerodynamics for micro air vehicle applications. (Progress in astronautics and aeronautics) AIAA Reston Vol. 195, VA (2001)Google Scholar
  2. 2.
    Lu, C. H., Lin, S.W.: Influence of the particle size on the electrochemical properties of lithium manganese oxide. J. Power Sources 97, 458–460 (2001)CrossRefGoogle Scholar
  3. 3.
    Drezen, T., Kwon, N. H., Bowen, P., et al.: Effect of particle size on LiMnPO4 cathodes. J. Power Sources 174, 949–953 (2007)CrossRefGoogle Scholar
  4. 4.
    Tran, T. D., Feikert, J. H., Pekala, R.W., et al.: Rate effect on lithium-ion graphite electrode performance. J. Applied Electrochem. 26, 1161–1167 (1996)CrossRefGoogle Scholar
  5. 5.
    Garcia, R. E., Chiang, Y. M., Carter, W. C., et al.: Microstructuralmodeling and design of rechargeable lithium-ion batteries. J. Electrochem. Soc. 152, A255–A263 (2004)CrossRefGoogle Scholar
  6. 6.
    Darling, R., Newman, J.: Modeling a porous intercalation electrode with two characteristic particle sizes. J. Electrochem. Soc. 144, 4201–4208 (1997)CrossRefGoogle Scholar
  7. 7.
    Ahn, S., Kim, Y., Kim, K. J., et al.: Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives. J. Power Sources 81, 896–901 (1999)CrossRefGoogle Scholar
  8. 8.
    Haran, B., Popov, B. N., White, R. E.: Determination of the hydrogen diffusion coefficient in metal hydrides by impedance spectroscopy. J. Power Sources 75, 56–63 (1998)CrossRefGoogle Scholar
  9. 9.
    Santhanagopalan, S., Guo, Q., White, R. E.: Parameter estimation and model discrimination for a lithium-ion cell. J. Electrochem. Soc. 154, A198–A206 (2007)CrossRefGoogle Scholar
  10. 10.
    Verbrugge, M. W., Conell R. S.: Electrochemical and thermal characterization of battery modules commensurate with electric vehicle integration. J. Electrochem. Soc. 149, A45–A53 (2002)CrossRefGoogle Scholar
  11. 11.
    Liaw, B. Y., Nagasubramanian, G., Jungst, R. G., et al.: Modeling of lithium ion cells—a simple equivalent-circuit model approach. Solid State Ionics 175, 835–839 (2004)CrossRefGoogle Scholar
  12. 12.
    Ramadass, P., Haran, B., White, R. E., et al.: Mathematical modeling of the capacity fade of Li-ion cells. J. Power Sources 123, 230–240 (2003)CrossRefGoogle Scholar
  13. 13.
    Zhang, X., Shyy, W., Sastry, A. M.: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154, A910–A916 (2007)CrossRefGoogle Scholar
  14. 14.
    Zhang, X., Sastry, A. M., Shyy, W.: Intercalation-induced stress and heat generation within single lithium-ion battery electrode particles. J. Electrochem. Soc. 155, A542–A552 (2008)CrossRefGoogle Scholar
  15. 15.
    Gupta, A., Seo, J. H., Zhang, X., et al.: Effective transport properties of LiMn2O4 electrode via particle-scale modeling. J. Electrochem. Soc. 158, A487–A497 (2011)CrossRefGoogle Scholar
  16. 16.
    Wang, C. W., Sastry, A. M.: Mesoscale modeling of a Li-ion polymer cell. J. Electrochem. Soc. 154, A1035–A1047 (2007)CrossRefGoogle Scholar
  17. 17.
    Ramadesigan, V., Boovaragavan, V., Pirkle, J. C., et al.: Efficient reformulation of solid-phase diffusion in physics-based lithium-ion battery models. J. Electrochem. Soc. 157, A854–A860 (2010)CrossRefGoogle Scholar
  18. 18.
    Northrop, P. W. C., Ramadesigan, V., De, S., et al.: Coordinate transformation, orthogonal collocation, model reformulation and simulation of electrochemical-thermal behavior of lithium-ion battery stacks. J. Electrochem. Soc. 158, A1461–A1477 (2011)CrossRefGoogle Scholar
  19. 19.
    De, S., Northrop, P. W. C., Ramadesigan, V., et al.: Modelbased simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density. J. Power Sources 227, 161–170 (2013)CrossRefGoogle Scholar
  20. 20.
    Ramadesigan, V., Northrop, P. W. C., De, S., et al.: Modeling and simulation of lithium-ion batteries from a systems engineering perspective. J. Electrochem. Soc. 159, R31–R45 (2012)CrossRefGoogle Scholar
  21. 21.
    Srinivasan, V., Newman, J.: Design and optimization of a natural graphite/iron phosphate lithium-ion cell. J. Electrochem. Soc. 151, A1530–A1538 (2004)CrossRefGoogle Scholar
  22. 22.
    Stephenson, D. E., Hartman, E. M., Harb, J. H., et al.: Modeling of particle-particle interactions in porous cathodes for lithium-ion batteries. J. Electrochem. Soc. 154, A1146–A1155 (2007)CrossRefGoogle Scholar
  23. 23.
    Fletcher, R., Powell, M. J. D.: A rapidly convergent descent method for minimization. The Computer Journal 6, 163–168 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Nelder, J. A., Mead. R.: A simplex method for function minimization. The Computer Journal 7, 308–313 (1965)zbMATHCrossRefGoogle Scholar
  25. 25.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. Proceedings of IEEE international conference on neural networks 4, 1942–1948 (1995)CrossRefGoogle Scholar
  26. 26.
    Zingg, D.W., Nemec, M., Pulliam, T. H.: A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization. REMN 17, 103–126 (2008)Google Scholar
  27. 27.
    Shyy, W., Cho, Y. C., Du, W., et al.: Surrogate-based modeling and dimension reduction techniques for multi-scale mechanics problems. Acta Mechanica Sinica 27, 845–865 (2011)CrossRefGoogle Scholar
  28. 28.
    Tseng, C., Shyy, W.: Modeling for isothermal and cryogenic cavitation. Int. J. Heat and Mass Transfer 53, 513–525 (2010)zbMATHCrossRefGoogle Scholar
  29. 29.
    Du, W., Gupta, A., Zhang, X., et al.: Effect of cycling rate, particle size and transport properties on lithium-ion cathode performance. Int. J. Heat and Mass Transfer 53, 3552–3561 (2010)zbMATHCrossRefGoogle Scholar
  30. 30.
    Doyle, M., Fuller, T. F., Newman, J.: Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 140, 1526–1533 (1993)CrossRefGoogle Scholar
  31. 31.
    Doyle, M., Newman, J., Gozdz, A.S., et al.: Comparison of modeling predictions with experimental data from plastic lithium ion cells. J. Electrochem. Soc. 143, 1890–1903 (1996)CrossRefGoogle Scholar
  32. 32.
    Fuller, T. F., Doyle, M., Newman, J.: Simulation and optimization of the dual lithium ion insertion cell. J. Electrochem. Soc. 141, 1–10 (1994)CrossRefGoogle Scholar
  33. 33.
    Queipo, N. V., Haftka, R. T., Shyy, W., et al.: Surrogate-based analysis and optimization. Prog. Aero. Sci. 41, 1–28 (2005)CrossRefGoogle Scholar
  34. 34.
    McKay, M. D., Beckman, R. J., Conover, W. J.: Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Myers, R. H., Montgomery, D. C.: Response Surface Methodology: Process and Product in Optimization Using Designed Experiments. Wiley and Sons Inc., New York, New York (1995)zbMATHGoogle Scholar
  36. 36.
    Lophaven, S. N., Nielsen, H. B., Sondergaard, J.: DACE—A Matlab kriging toolbox. Version 2.0, Technical Report, IMM-TR-2002-12, Technical University of Denmark, Denmark (2002)Google Scholar
  37. 37.
    Goel, T., Dorney, D. J., Haftka, R. T., et al.: Improving the hydrodynamic performance of diffuser vanes via shape optimization. Computers & Fluids 37, 705–723 (2008)zbMATHCrossRefGoogle Scholar
  38. 38.
    Sobol, I.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in simulation 55, 271–280 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Mack, Y., Goel, T., Shyy, W., et al.: Surrogate Model-based Optimization Framework: A Case Study in Aerospace Design. In: Yang S, Ong YS, Jin Y (eds) Evolutionary computation in dynamic and uncertain environments. (Studies in computational intelligence) Springer, Berlin Heidelberg New York, 323–342 (2007)CrossRefGoogle Scholar
  40. 40.
    Gill P. E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Journal on optimization 12, 979–1006 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Martins, J. R. R. A., Sturdza, P., Alonso, J.J.: The complex-step derivative approximation. ACM Transactions on Mathematical Software 29, 245–262 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Powell, M. J. D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Watson GA (ed) Lecture notes in mathematics. (Numerical analysis) Springer, Berlin Heidelberg New York, 144–157 (1978)Google Scholar
  43. 43.
    Chen, Y. H., Wang, C. W., Zhang, X., et al.: Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials. J. Power Sources, 195, 2851–2862 (2010)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wenbo Du
    • 1
  • Nansi Xue
    • 1
  • Amit Gupta
    • 1
    • 2
  • Ann M. Sastry
    • 3
  • Joaquim R. R. A. Martins
    • 1
  • Wei Shyy
    • 1
    • 4
    Email author
  1. 1.Department of Aerospace EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Department of Mechanical EngineeringIndian Institute of TechnologyNew DelhiIndia
  3. 3.Department of Mechanical EngineeringUniversity of MichiganAnn ArborUSA
  4. 4.Department of Mechanical EngineeringHong Kong University of Science and TechnologyClear Water Bay, Hong KongChina

Personalised recommendations