Acta Mechanica Sinica

, Volume 28, Issue 5, pp 1479–1487

Influence of flexible solar arrays on vibration isolation platform of control moment gyroscopes

Research Paper


A high-performance vibration isolation platform (VIP) has been developed for a cluster of control moment gyroscopes (CMGs). CMGs have long been used for satellite attitude control. In this paper, the influence of flexible solar arrays on a passive multi-strut VIP of CMGs for a satellite is analyzed. The reasonable parameters design of flexible solar arrays is discussed. Firstly, the dynamic model of the integrated satellite with flexible solar arrays, the VIP and CMGs is conducted by Newton-Euler method. Then based on reasonable assumptions, the transmissibility matrix of the VIP is derived. Secondly, the influences of the flexible solar arrays on both the performance of the VIP and the stability of closed-loop control systems are analyzed in detail. The parameter design limitation of these solar arrays is discussed. At last, by selecting reasonable parameters for both the VIP and flexible solar arrays, the attitude stabilization performance with vibration isolation system is predicted via simulation.


Control moment gyroscope Vibration isolation platform Attitude control Ultra quiet platform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lei, J., Xu, S. J.: Underactuated spacecraft angular velocity stabilization and three-axis attitude stabilization using two single gimbal control moment gyros. Acta Mechanica Sinica 26, 279–288 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Zhang, J. R., Rachid, A., Zhang, Y.: Attitude control for part actuator failure of agile small satellite. Acta Mechanica Sinica 24, 463–468 (2008)CrossRefGoogle Scholar
  3. 3.
    Li, J. F., Meng, X., Gao, Y. F., et al.: Study on relative orbital configuration in satellite formation flying. Acta Mechanica Sinica 21, 87–94 (2005)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Davis, L. P., Hyde, T. T.: Moment control unit for spacecraft attitude control. United States Patent, 6340137, 2002-01-22Google Scholar
  5. 5.
    Kim, J., Agrawal, B.: Acquisition, tracking, and pointing technology development for bifocal relay mirror spacecraft. In: Proceedings of Beam Control Conference, Directed Energy Professional Society, Monterey, USA, March 21–24 (2006)Google Scholar
  6. 6.
    Peck, M. A., Cavender, A. R.: An airbearing-based tested for momentum-control systems. Advances in the Astronautical Science 114, 427–446 (2003)Google Scholar
  7. 7.
    Baudoin, A., Boussarie, E., Damilano, P., et al.: A multi mission and multi cooperative program. In: Proceeding of the 52nd International Astronautical Congress, Toulouse, France, Oct. 1–5 (2001)Google Scholar
  8. 8.
    Anderson, E., Trubert, M., Fanson, J., et al.: Testing and application of a viscous passive damper for use in precision truss structures. In: Proceeding of the 32nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Baltimore, USA, Apr. 8–10, 2796–2808 (1991)Google Scholar
  9. 9.
    Davis, L. P., Workman, B. J.: Design of a D-Strut™ and its application results in the JPL, MIT, and LaRC test beds. In: Proceeding of the 33rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Dallas, USA, Apr. 13–15, 1524–1530 (1992)Google Scholar
  10. 10.
    Davis, L. P., Cunningham, D., Harrell, J.: Advanced 1.5 Hz passive viscous isolation System. In: Proceeding of the 35th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Hilton Head, USA, Apr. 18–20 (1994)Google Scholar
  11. 11.
    Davis, L. P., Cunningham, D., Bicos, A., et al.: Adaptable passive viscous damper (an adaptable D-Strut™). In: Proceedings of the Conference, Smart structures and materials 1994: Passive damping, Orlando, USA, Feb. 14–16, 47–58 (1994)Google Scholar
  12. 12.
    Davis, L. P., Carter, D. R., Hyde, T. T.: Second generation hybrid D-strut. In: Proceedings of the Conference, Smart Structures and Materials 1995: Passive Damping, San Diego, USA, Mar. 1–2, 161–175 (1995)Google Scholar
  13. 13.
    Wilson, G. W., Wolke, P. J.: Performance prediction of D-Strut isolation systems. In: Proceeding of Passive Damping and Isolation Conference, San Diego, USA, Mar. 3–4 (1997)Google Scholar
  14. 14.
    Davis, L. P., Wilson, J. F.: Hubble Space Telescope reaction wheel assembly vibration isolation system. Structural Dynamics and Control Interaction of Flexible Structures, NASA Repot. N87-22702, 669–690 (1986)Google Scholar
  15. 15.
    Pendergast, K. J., Schauwecker, C. J.: Use of a passive reaction wheel jitter isolation system to meet the advanced X-ray astrophysics facility imaging performance requirements. In: Proceeding of Astronomical Telescope and Instrumentation Conference, Kona, USA, Mar. 20–28 (1998)Google Scholar
  16. 16.
    Bronowicki, A. J.: Vibration isolator for large space telescopes. Journal of Spacecraft and Rocket 43, 45–53 (2006)CrossRefGoogle Scholar
  17. 17.
    Basdogan, I., Grogan, R., Kissil, A., et al.: Preliminary optical performance analysis of the space interferometer mission using an integrated modeling methodology. Control of Vibration and Noise-New Millennium. In: Proceeding of International Mechanical Engineering Congress & Exposition 6th Biennial Symposium on Active Control of Vibration and Noise, Orlando, USA, Nov. 5–10 (2000)Google Scholar
  18. 18.
    Dewell, L., Pedreiro, N., Blaurock, C., et al.: Precision telescope pointing and spacecraft vibration isolation for the Terrestrial Planet Finder Coronagraph. In: Proceeding of UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts II, San Diego, USA, July 31, 589902 (2005)Google Scholar
  19. 19.
    LoBosco, D. M., Blaurock, C., Chung, S. J., et al.: Integrated modeling of optical performance for the Terrestrial Planet Finder structurally connected interferometer. In: Proceeding of SPIE Modeling and Systems Engineering for Astronomy, 278–289 (2004)Google Scholar
  20. 20.
    Miller, S. E., Kirchman, P., Sudey, J.: Reaction wheel operational impacts on the GOES-N jitter environment. In: Proceeding of AIAA Guidance, Navigation and Control Conference and Exhibit. Hilton Head, USA, Aug. 20–23 (2007)Google Scholar
  21. 21.
    Liu, K. C., Maghami, P.: Reaction wheel disturbance modeling, jitter analysis, and validation tests for Solar Dynamics Observatory. In: Proceeding of AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, USA, Aug. 18–21 (2008)Google Scholar
  22. 22.
    Gary, M., Mike, F., Kong, H., et al.: Fine pointing control for a next generation space telescope. Space telescopes and instruments V. In: Proceedings of the Conference, Kona, USA, Mar. 25–28, 1070–1077 (1998)Google Scholar
  23. 23.
    Luis, M., Frank, T., Satya, A., et al.: Line of sight stabilization for the James Webb Space Telescope. Advances in the Astronautical Sciences 121, 17–30 (2005)Google Scholar
  24. 24.
    Zhang, Y., Xu, S. J.: Vibration isolation platform for control moment gyroscopes on satellites. Journal of Aerospace Engineering (2011) DOI: 10.1061/(ASCE)AS.1943-5525.0000156Google Scholar
  25. 25.
    Anandakrishnan, S. M., Connor, C. T., Lee, S., et al.: Hubble Space Telescope solar damper for improving control system stability. In: Proceeding of Aerospace Conference Proceedings, 2000 IEEE, USA, Mar. 18–25, 261–276 (2000)Google Scholar
  26. 26.
    Zeng, X. Y., Li, J. F., Baoyin, H. X., et al.: Trajectory optimization and applications using high performance solar sails. Theor. Appl. Mech. Lett. 1, 033001 (2011)CrossRefGoogle Scholar
  27. 27.
    Dasgupta, B., Mruthyunjaya, T. S.: A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mechanism and Machine Theory 33, 1135–1152 (1998)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Mahboubkhah, M., Nategh, M. J., Khadem, S. E.: A comprehensive study on the free vibration of machine tools’ hexapod table. The International Journal of Advanced Manufacturing Technology 40, 1239–1251 (2009)CrossRefGoogle Scholar
  29. 29.
    Zhang, Y., Xu, S. J.: High frequency vibration isolation of CMG for satellites. Journal of Astronautics 32, 1722–1727 (2011)Google Scholar
  30. 30.
    Jin, L.: Study on attitude dynamics and control of spacecraft using angular momentum exchange devices. [Ph.D. Thesis], Beihang University, Beijing (2008)Google Scholar
  31. 31.
    Zhang, J. R., Xu, S. J., Li, J. F.: A new design approach of PD controllers. Aerospace Science and Technology 9, 329–336 (2005)MATHCrossRefGoogle Scholar
  32. 32.
    Jin, J., Zhang, J. R., Liu, Z. Z.: Error analysis and a new steering law design for spacecrafts control system using SGCMG. Acta Mechanica Sinica 27, 803–808 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Aerospace EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.School of AstronauticsBeihang UniversityBeijingChina

Personalised recommendations