Acta Mechanica Sinica

, Volume 28, Issue 5, pp 1356–1366 | Cite as

Experimental study on mechanical properties of methane-hydrate-bearing sediments

  • Xu-Hui Zhang
  • Xiao-Bing Lu
  • Li-Min Zhang
  • Shu-Yun Wang
  • Qing-Ping Li
Research Paper


Mechanical properties of methane hydrate-bearing-sediments (MHBS) are basic parameters for safety analysis of hydrate exploration and exploitation. Young’s modulus, cohesion, and internal friction angle of hydrate-bearing sediments synthesized in laboratory, are investigated using tri-axial tests. Stress-strain curves and strength parameters are obtained and discussed for different compositions and different hydrate saturation, followed by empirical expressions related to the cohesion, internal friction angle, and modulus of MHBS. Almost all tested MHBS samples exhibit plastic failure. With the increase of total saturation of ice and methane hydrate (MH), the specimens’ internal friction angle decreases while the cohesion increases.


Gas hydrate sediment Tri-axial test Cohesion Internal friction angle Elastic modulus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sloan, Jr. E. D.: Clathrate Hydrates of Natural Gases. Marcel Dekker Inc., New York (1998)Google Scholar
  2. 2.
    Kvenvolden, K. A.: Methane hydrate-A major reservoir of carbon in the shallow geosphere. Chem. Geol. 71, 41–45 (1988)CrossRefGoogle Scholar
  3. 3.
    Kvenvolden, K. A., Lorenson T. D.: The global occurrence of natural gas hydrate. Geophysical Monograph 124, 3–18 (2001)CrossRefGoogle Scholar
  4. 4.
    Koh, C. A.: Towards a fundamental understanding of natural gas hydrates. Chem. Soc. Rev. 31, 157–167 (2002)CrossRefGoogle Scholar
  5. 5.
    Clayton, C. R. I., Priest, J. A., Best, A. I.: The effects of disseminated methane hydrate on the dynamic stiffness and damping of a sand. Geotechnique 55, 423–434 (2005)CrossRefGoogle Scholar
  6. 6.
    Kvenvolden, K. A., Lorenson, T. D.: The global occurrence of natural gas hydrate. Geophysical Monograph 124, 3–18 (2001)CrossRefGoogle Scholar
  7. 7.
    Shine, K. P., Derwent, R. G., Wuebbles, D. J., et al.: Radiative forcing of climate. In: Climate Change, The IPCC Scientific Assessment, edited by Houghton, J. T., Jenkins, G. J., Ephraums, J. J., Cambridge University Press, New York, 41–68 (1990)Google Scholar
  8. 8.
    Xu, W., Germanovich, L. N.: Excess pore pressure resulting from methane hydrate dissociation in marine sediments: A theoretical approach. J. Geophys. Res. 111, B01104 (2006)CrossRefGoogle Scholar
  9. 9.
    Sultan, N.: Comment on “Excess pore pressure resulting from methane hydrate dissociation in marine sediments: A theoretical approach” by Wenyue Xu and Leonid N. Germanovich. J. Geophys. Res. Solid Earth 112, 78–84 (2007)Google Scholar
  10. 10.
    McIver, Richard, D.: Role of naturally occurring gas hydrate in sediment transport. American Association of Petroleum Geologists, Bulletin 66, 789–792 (1982)Google Scholar
  11. 11.
    Bugge, T., Befring, S., Belderson, R. H., et al.: A giant three-stage submarine slide off Norway. Geo-Marine Letters 7, 191–198 (1987)CrossRefGoogle Scholar
  12. 12.
    Driscoll, N. W., Weissel, J. K., Goff, J. A.: Potential for large scale submarine slope failure and tsunami generation along the US mid-Atlantic coast. Geology 28, 407–410 (2000)CrossRefGoogle Scholar
  13. 13.
    Bouriak, S., Vanmste, M., Saoutkine, A.: Inferred gas hydrates and clay diapers near the Storegga slide on the southern edge of the Vφring Plateau, off shore Norway. Marine Geology 163 125–148 (2000)CrossRefGoogle Scholar
  14. 14.
    Jung, W. Y., Peter, R. V.: Effects of bottom water warming and sea level rise on holocene hydrate dissociation and mass wasting along the Norwegian-Barents Continental Margin. Journal of Geophysical Research 109, B06104 (2004)CrossRefGoogle Scholar
  15. 15.
    Kayen, R. E., Lee, H. J.: Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort Sea margin. Mar. Geotechnol. 10, 125–141 (1991)CrossRefGoogle Scholar
  16. 16.
    Milkov, A. V.: World distribution of submarine mud volcanoes and associated gas hydrate. Marine Geol. 167, 29–42 (2000)CrossRefGoogle Scholar
  17. 17.
    Briaud, J. L., Chaouch, A.: Hydrate melting in soil around hot conductor. J. Geotech. Geoenvir. Eng. 123, 645–653 (1997)CrossRefGoogle Scholar
  18. 18.
    Chaouch, A., Briaud, J. L.: Post melting behavior of gas hydrates in soft Ocean sediments. OTC 8298 1–11 (1997)Google Scholar
  19. 19.
    Zhang, X. H., Lu, X. B., Li, Q. P., et al.: Thermally induced evolution of phase transformations in gas hydrate sediment. SCIENCE CHINA-Physics, Mechanics & Astronomy 53, 1530–1535 (2010)CrossRefGoogle Scholar
  20. 20.
    Brooks, J. M., Cox, B. H., Bryant, W. R., et al.: Association of gas hydrates and oil seepage in the gulf of Mexico. Organic Geochemistry 10, 221–234 (1986)CrossRefGoogle Scholar
  21. 21.
    Kwon, T. H., Cho, G. C., Santamarina, J. C.: Gas hydrate dissociation in sediments: pressure temperature evolution. Geochemistry Geophysics Geosystems 9, Q03019 (2008)CrossRefGoogle Scholar
  22. 22.
    Francisca, F., Yun, T. S., Ruppel, C., et al.: Geophysical and geotechnical properties of near sea-floor sediments in the northern gulf of Mexico gas hydrate province. Earth and Planetary Science Letters 237, 924–939 (2005)CrossRefGoogle Scholar
  23. 23.
    Wu, B. H., Zhang, G. X., Zhu, Y. H.: Progress of gas hydrate investigation in China offshore. Earth Science Frontiers 10, 177–189 (2003)Google Scholar
  24. 24.
    Guerin, G., Goldberg, D., Meltser, A.: Characterization of in situ elastic properties of gas hydrate-bearing sediments on the Blake Ridge. Journal of Geophysical Research 104, 17781–17795 (1999)CrossRefGoogle Scholar
  25. 25.
    Lee, M. W., Collett, T. S.: Elastic properties of gas hydrate-bearing sediments. Geophysics 66, 763–771 (2001)Google Scholar
  26. 26.
    Winters, W. J., Waite, W. F., Mason, D. H., et al.: Methane gas hydrate effect on sediment acoustic and strength properties. Journal of Petroleum Science and Engineering 56, 127–135 (2007)CrossRefGoogle Scholar
  27. 27.
    Winters, W. J., Pecher, I. A., Waite, W. F., et al.: Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate. American Mineralogist 89, 1221–1227 (2004)Google Scholar
  28. 28.
    Hyodo, M., Nakata, Y., Yoshimoto, N., et al.: Shear behavior of methane hydrate-bearing sand. In: Proc. 17th Int. Offshore and Polar Eng. Conf., Lisbon, Portugal, 1326–1333 (2007)Google Scholar
  29. 29.
    Masui, A., Haneda, H., Ogata, Y. et al.: Mechanical properties of sandy sediment containing marine gas hydrates in deep sea offshore Japan. In: Proc. 17th Int. Offshore and Polar Eng. Conf., Ocean Mining Symposium, Lisbon, Portugal, 53–56 (2007)Google Scholar
  30. 30.
    Masui, A., Haneda, H., Ogata, Y., et al.: Effect of methane hydrate formation on shear strength of synthetic methane hydrate sediment. In: Proc. 15th Int. Offshore and Polar Eng. Conf., Seoul, Korea, 364–369 (2005)Google Scholar
  31. 31.
    Wei, H. Z., Yan, R. T., Chen, P., et al.: Deformation and failure behavior of carbon dioxide hydrate-bearing sands with different hydrate contents under tri-axial shear tests. Rock and Soil Mechanics 32(Supp. 2), 198–203 (2011)Google Scholar
  32. 32.
    Yun, T. S., Santamarina, J. C., Rupple, C.: Mechanical properties of sand, silt and clay containing tetrahydrofuran hydrate. Journal of Geophysical Research 112, B04106 (2007)CrossRefGoogle Scholar
  33. 33.
    Miyazaki, K., Masui, A., Sakamoto, Y., et al.: Triaxial compressive properties of artificial methane-hydrate-bearing-sediment. Journal of Geophysical Research 116, B06102, (2011)CrossRefGoogle Scholar
  34. 34.
    Llamedo, M., Anderson, R., Tohidi, B.: Thermodynamic prediction of clathrate hydrate dissociation conditions in mesoporous media. American Mineralogist 89, 1264–1270 (2004)Google Scholar
  35. 35.
    Turner, D., Sloan, E. D.: Hydrate phase equilibrium measurements and predictions in sediments. In: Proceedings of the Fourth International Conference on Gas Hydrates, Yokohama, Japan, 327–330 (2002)Google Scholar
  36. 36.
    Huang, D. Z., Fan, S. S.: The promotion of methane hydrate formation in quiescent system. Chemistry 5, 379–384 (2005)Google Scholar
  37. 37.
    Freij-Ayoub, R., Tan, C., Clennel, B., et al.: A well-bore stability model for hydrate bearing sediment. J. Petro. Science Engrg. 57, 209–220 (2007)CrossRefGoogle Scholar
  38. 38.
    Helgerud, M. B., Dvorkin, J., Nur, A.: Rock physics characterization for gas hydrate reservoirs: elastic properties. Annals of the New York Academy of Sciences 9, 49–58 (2000)Google Scholar
  39. 39.
    Lee, M. W., Collett, T. S.: Elastic properties of gas hydratebearing sediments. Geophysics 66, 763–771 (2001)Google Scholar
  40. 40.
    Cox, J.: Natural Gas Hydrates: Properties, Occurrence and Recovery. Butterworth, Woburn, USA (1983)Google Scholar
  41. 41.
    Waite, W. F., Santamarina, J. C., Cortes, D. D., et al.: Physical properties of hydrate-bearing sediments. Reviews of Geophysics 47, 1–38 (2009)CrossRefGoogle Scholar
  42. 42.
    Aryanpour, G., Farzaneh, M.: Analysis of axial strain in one-dimensional loading by different models. Acta Mech. Sin. 26, 745–753 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xu-Hui Zhang
    • 1
  • Xiao-Bing Lu
    • 1
  • Li-Min Zhang
    • 2
  • Shu-Yun Wang
    • 1
  • Qing-Ping Li
    • 3
  1. 1.Laboratory for Hydrodynamics and Ocean Enginnering, Institute of MechanicsChinese Academy of SciencesBeijingChina
  2. 2.Department of Civil and Environmental Engineering, Hong KongUniversity of Science and TechnologyHong KongChina
  3. 3.Research CentreChina Ocean Oil Co.BeijingChina

Personalised recommendations