Acta Mechanica Sinica

, Volume 28, Issue 4, pp 928–940 | Cite as

On elastocapillarity: A review

  • Jian-Lin Liu
  • Xi-Qiao Feng
Review Article


Elastocapillary phenomena involving elastic deformation of solid structures coupled with capillary effects of liquid droplets/films can be observed in a diversity of fields, e.g., biology and microelectromechanical systems (MEMS). Understanding the physical mechanisms underlying these phenomena is of great interest for the design of new materials and devices by utilizing the effects of surface tension at micro and nano scales. In this paper, some recent developments in the investigations on elastocapillary phenomena are briefly reviewed. Especially, we consider the deformation, adhesion, self-assembly, buckling and wrinkling of materials and devices induced by surface tensions or capillary forces. The main attention is paid to the experimental results of these phenomena and the theoretical analysis methods based on continuum mechanics. Additionally, the applications of these studies in the fields of MEMS, micro/nanometrology, and biomimetic design of advanced materials and devices are discussed.


Soft matter Surface tension Elastocapillarity Self-assembly Wetting Adhesion Instability Microstructure Biomimetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Gennes, P. G.: Wetting: statics and dynamics. Reviews of Modern Physics 57, 827–863 (1985)CrossRefGoogle Scholar
  2. 2.
    Zheng, Y. M., Bai, H., Huang, Z. B., et al.: Directional water collection on wetted spider silk. Nature 463, 640–643 (2010)CrossRefGoogle Scholar
  3. 3.
    Neinhuis, C., Barthlott, W.: Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany 79, 667–677 (1997)CrossRefGoogle Scholar
  4. 4.
    Barthlott, W., Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997)CrossRefGoogle Scholar
  5. 5.
    Otten, A., Herminghaus, S.: How plants keep dry: a physicist’s point of view. Langmuir 20, 2405–2408 (2004)CrossRefGoogle Scholar
  6. 6.
    Hu, D. L., Chan, B., Bush, J. W.: The hydrodynamics of water strider locomotion. Nature 424, 663–666 (2004)CrossRefGoogle Scholar
  7. 7.
    Su, Y. W., Ji, B. H., Zhang, K., et al.: Nano to micro structural hierarchy is crucial for stable superhydrophobic and waterrepellent surfaces. Langmuir 26, 4984–4989 (2010)CrossRefGoogle Scholar
  8. 8.
    Feng, X. Q., Gao, X. F., Wu, Z. N., et al.: Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. Langmuir 23, 4892–4896 (2007)CrossRefGoogle Scholar
  9. 9.
    Liu, J. L., Feng, X. Q., Wang, G. F.: Buoyant force and sinking conditions of a hydrophobic thin rod floating on water. Physical Review E 76, 066103 (2007)CrossRefGoogle Scholar
  10. 10.
    Wu, C. W., Kong, X. Q., Wu, D.: Micronanostructures of the scales on a mosquito’s legs and their role in support. Physical Review E 76, 017301 (2007)CrossRefGoogle Scholar
  11. 11.
    Mlot, N. J., Tovey, C. A., Hu, D. L.: Fire ants self-assemble into waterproof rafts to survive floods. Proceedings of the National Academy of Sciences 108, 7669–7673 (2011)CrossRefGoogle Scholar
  12. 12.
    Parker, A. R., Lawrence, C. R.: Water capture by a desert beetle. Nature 414, 33–34 (2001)CrossRefGoogle Scholar
  13. 13.
    Stewart, D.: The quest to quench. National Wildlife 42, 52–56 (2004)Google Scholar
  14. 14.
    Prakash, M., Quéré, D., Bush, J. W. M.: Surface tension transport of prey by feeding shorebirds: the capillary ratchet. Science 320, 931–934 (2008)CrossRefGoogle Scholar
  15. 15.
    Williams, J. A., Le, H. R.: Tribology and MEMS. Journal of Physics D: Applied Physics 39, R201–R214 (2006)CrossRefGoogle Scholar
  16. 16.
    Zhao, Y. P., Wang, L. S., Yu, T. X.: Mechanics of adhesion in MEMS: a review. Journal of Adhesion Science and Technology 17, 519–546 (2003)CrossRefGoogle Scholar
  17. 17.
    Bico, J., Roman, B., Moulin, L., et al.: Adhesion: elastocapillary coalescence in wet hair. Nature 432, 690 (2004)CrossRefGoogle Scholar
  18. 18.
    Mastrangelo, C. H., Hsu, C. H.: Mechanical stability and adhesion of microstructures under capillary forces, part I: basic theory. Journal of Microelectromechanical Systems 2, 33–43 (1993)CrossRefGoogle Scholar
  19. 19.
    Mastrangelo, C. H., Hsu, C. H.: Mechanical stability and adhesion of microstructures under capillary forces, part II: experiments. Journal of Microelectromechanical Systems 2, 44–55 (1993)CrossRefGoogle Scholar
  20. 20.
    De Boer, M. P., Michalske, T. A.: Accurate method for determining adhesion of cantilever beams. Journal of Applied Physics 86, 817–827 (1999)CrossRefGoogle Scholar
  21. 21.
    Kwon, H., Kim, H., Puell, J., et al.: Equilibrium of an elastically confined liquid drop. Journal of Applied Physics 103, 093519 (2008)CrossRefGoogle Scholar
  22. 22.
    Li, X. D., Peng, Y.: Investigation of capillary adhesion between the microcantilever and the substrate with electronic speckle pattern interferometry. Applied Physics Letters 89, 234104 (2006)CrossRefGoogle Scholar
  23. 23.
    Liu, J. L., Xia R., Zhou, Y. T.: Stiction of a nano-beam with surface effect. Chinese Physics Letters 28, 116201 (2011)CrossRefGoogle Scholar
  24. 24.
    Kim, H. Y., Mahadevan, L.: Capillary rise between elastic sheets. Journal of Fluid Mechanics 548, 141–150 (2006)CrossRefGoogle Scholar
  25. 25.
    Liu, J. L., Feng, X. Q., Xia, R., et al.: Hierarchical capillary adhesion of micro-cantilevers or hairs. Journal of Physics D: Applied Physics 40, 5564–5570 (2007)CrossRefGoogle Scholar
  26. 26.
    Duprat, C., Proti`ere, S., Beebe, A. Y., et al.: Wetting of flexile fiber arrays. Nature 482, 510–513 (2012)CrossRefGoogle Scholar
  27. 27.
    Journet, C., Moulinet, S., Ybert, C., et al.: Contact angle measurements on superhydrophobic carbon nanotube forest: effect of fluid pressure. Europhysics Letters 71, 104–109 (2005)CrossRefGoogle Scholar
  28. 28.
    Liu, J. L., Feng, X. Q.: Capillary adhesion of micro-beams: finite deformation analyses. Chinese Physics Letters 24, 2349–2352 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Liu, J. L.: Analogies between a meniscus and a cantilever. Chinese Physics Letters 26, 116803 (2009)CrossRefGoogle Scholar
  30. 30.
    Liu, J. L.: Theoretical analysis on capillary adhesion of microsized plates with a substrate. Acta Mechanica Sinica 26, 217–223 (2010)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Shi, W. D., Feng, X. Q., Gao, H. J.: Two-dimensional model of vesicle adhesion on curved substrates. Acta Mechanica Sinica 22, 529–535 (2006)CrossRefzbMATHGoogle Scholar
  32. 32.
    Gao, H. J., Shi, W. D., Freund, L. B.: Mechanics of receptormediated endocytosis. Proceedings of the National Academy of Sciences 102, 9469–9474 (2005)CrossRefGoogle Scholar
  33. 33.
    Seifert, U.: Adhesion of vesicles in two dimensions. Physical Review A 43, 6803–6814 (1991)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Oyharcabal, X., Frisch, T.: Peeling off an elastica from a smooth attractive substrate. Physical Review E 71, 036611 (2005)CrossRefGoogle Scholar
  35. 35.
    Swain, P. S., Lipowsky, R.: Contact angles in constrained wetting. Langmuir 14, 6772–6780 (1998)CrossRefGoogle Scholar
  36. 36.
    Bormashenko, E.: Young, Boruvka-Neumann, Wenzel and Cassie-Baxter equations as the transversality conditions for the variational problem of wetting. Colloids and Surfaces A: Physicochemical and Engineering Aspects 345, 163–165 (2009)CrossRefGoogle Scholar
  37. 37.
    Whyman, G., Bormashenko, E., Stein, T.: The rigorous derivation of Young, Cassie-Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chemical Physics Letters 450, 355–359 (2008)CrossRefGoogle Scholar
  38. 38.
    Liu, J. L.: Explicit solutions for a SWCNT collapse. Archive of Applied Mechanics 82, 767–776 (2012)CrossRefGoogle Scholar
  39. 39.
    Gracias, D. H., Kavthekar, V., Love, J. C., et al.: Fabrication of micrometer-scale, patterned polyhedra by self-assembly. Advanced Materials 14, 235–238 (2002)CrossRefGoogle Scholar
  40. 40.
    Roman, B., Bico, J.: Elasto-capillarity: deforming an elastic structure with a liquid drop. Journal of Physics: Condensed Matter 22, 493101 (2010)CrossRefGoogle Scholar
  41. 41.
    Py, C., Reverdy, P., Doppler, L., et al.: Capillary origami: spon taneous wrapping of a droplet with an elastic sheet. Physical Review Letters 98, 156103 (2007)CrossRefGoogle Scholar
  42. 42.
    Py, C., Reverdy, P., Doppler, L., et al.: Capillarity induced folding of elastic sheets. The European Physical Journal Special Topics 166, 67–71 (2009)CrossRefGoogle Scholar
  43. 43.
    Py, C., Bastien, B., Bico, J., et al.: 3D aggregation of wet fibers. Europhysics Letters 77, 44005 (2007)CrossRefGoogle Scholar
  44. 44.
    Li, H., Guo, X., Nuzzo, R. G., et al.: Capillary induced selfassembly of thin foils into 3D structures. Journal of the Mechanics and Physics of Solids 58, 2033–2042 (2010)CrossRefzbMATHGoogle Scholar
  45. 45.
    McHale, G., Newton, M. I., Shirtcliffe, N. J., et al.: Capillary origami: superhydrophobic ribbon surfaces and liquid marbles. Beilstein Journal of Nanotechnology 2, 145–151 (2011)CrossRefGoogle Scholar
  46. 46.
    Hure, J., Roman, B., Bico, J.: Wrapping an adhesive sphere with an elastic sheet. Physical Review Letters, 106, 174301 (2011)CrossRefGoogle Scholar
  47. 47.
    Py, C., Reverdy, P., Doppler, L., et al.: Capillary origami. Physics of Fluids 19, 091104 (2007)CrossRefGoogle Scholar
  48. 48.
    Patra, N., Wang, B., Kral, P.: Nanodroplet activated and guided folding of graphene nanostructures. Nano Letters 9, 3766–3771 (2009)CrossRefGoogle Scholar
  49. 49.
    Peng, Z. L., Chen, S. H.: Effects of the relative humidity and water droplet on adhesion on adhesion of a bio-inspired nano-film. Colloids and Surfaces B: Biointerfaces 88, 717–721 (2011)CrossRefGoogle Scholar
  50. 50.
    Antkowiak, A., Audoly, B., Josserand, C., et al.: Instant fabrication and selection of folded structures using drop impact. Proceedings of the National Academy of Sciences 108, 10400–10404 (2011)CrossRefGoogle Scholar
  51. 51.
    Chakrapani, N., Wei, B., Carrillo, A., et al.: Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. Proceedings of the National Academy of Sciences 101, 4009–4012 (2004)CrossRefGoogle Scholar
  52. 52.
    Lu, C. H., Qi, L.M., Yang, J. H., et al.: Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate. Chemical Communications 33, 3351–3553 (2006)Google Scholar
  53. 53.
    Pokroy, B., Kang, S. H., Mahadevan, L., et al.: Selforganization of a mesoscale bristle into ordered, hierarchical helical assemblies. Science 323, 237–240 (2009)CrossRefGoogle Scholar
  54. 54.
    Ji, X. Y., Zhao, M. Q., Wei, F., et al.: Spontaneous formation of double helical structure due to interfacial adhesion. Applied Physics Letters, 101, 011905 (2009)Google Scholar
  55. 55.
    Wu, D., Chen, Q. D., Xu, B. B., et al.: Self-organization of polymer nanoneedles into large-area ordered flowerlike arrays. Applied Physics Letters 95, 091902 (2009)CrossRefGoogle Scholar
  56. 56.
    Boudaoud, A., Bico, J., Roman, B.: Elastocapillary coalescence: aggregation and fragmentation with a maximal size. Physical Review E 76, 060102 (2007)CrossRefGoogle Scholar
  57. 57.
    Matsungaga, M., Aizenberg, M., Aizenberg, J.: Controlling the stability and reversibility of micropillar assembly by surface chemistry. Journal of the American Chemical Society 133, 5545–5553 (2011)CrossRefGoogle Scholar
  58. 58.
    Yuan, Q. Z., Zhao, Y. P.: Precursor film in dynamic wetting, electrowetting and electro-elasto-capillarity. Physical Review Letters 104, 246101 (2010)CrossRefGoogle Scholar
  59. 59.
    Pineirua, M., Bico, J., Roman, B.: Capillary origami controlled by an electric field. Soft Matter 6, 4491–4496 (2010)CrossRefGoogle Scholar
  60. 60.
    Wang, Z., Wang, F. C., Zhao, Y. P.: Tap dance of a water droplet. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 8, 2485–2495 (2012)CrossRefGoogle Scholar
  61. 61.
    Mock, U., Forster, R., Menz, W., et al.: Towards ultrahydrohpobic surfaces: a biomimetic approach. Journal of Physics: Condensed Matter 17, S639-S648 (2005)Google Scholar
  62. 62.
    Feng, L., Song, Y., Zhai, J., et al.: Creation of a superhydrophobic surface from an amphiphilic polymer. Angewandte Chemie International Edition 42, 800–802 (2003)CrossRefGoogle Scholar
  63. 63.
    Hsu, S. H., Sigmund, W. M.: Artificial hairy surfaces with a nearly perfect hydrophobic response. Langmuir 26, 1504–1506 (2010)CrossRefGoogle Scholar
  64. 64.
    Blow, M. L., Yeomans, J. M.: Superhydrophobicity on hairy surfaces. Langmuir 26, 16071–16083 (2010)CrossRefGoogle Scholar
  65. 65.
    Bernardino, N. R., Blickle, V., Dietrich, S.: Wetting of surfaces covered by elastic hairs. Langmuir 26, 7233–7241 (2010)CrossRefGoogle Scholar
  66. 66.
    Lee, S., Bush, J. W. M., Hosoi, A. E., et al.: Crawling beneath the free surface: water snail locomotion. Physics of Fluids 20, 082106 (2008)CrossRefGoogle Scholar
  67. 67.
    Hu, D. L, Bush, J. W. M.: Meniscus-climbing insects. Nature 437, 733–736 (2005)CrossRefGoogle Scholar
  68. 68.
    Gao, X. F., Jiang, L.: Water-repellent legs of water striders. Nature 432, 36 (2004)CrossRefGoogle Scholar
  69. 69.
    Shi, F., Wang, Z. Q., Zhang, X.: Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimick the legs of water striders. Advanced Materials 17, 1005–1009 (2005)CrossRefGoogle Scholar
  70. 70.
    Shi, F., Niu, J., Liu, J. L., et al.: Towards understanding why superhydrophobic coating is needed by water striders. Advanced Materials 19, 2257–2261 (2007)CrossRefGoogle Scholar
  71. 71.
    Zheng, Q. S., Yu, Y., Feng, X. Q.: The role of adaptivedeformation of water strider leg in its walking on water. Journal of Adhesion Science and Technology 23, 493–501 (2009)CrossRefGoogle Scholar
  72. 72.
    Vella, D.: Floating objects with finite resistance to bending. Langmuir 24, 8701–8706 (2008)CrossRefGoogle Scholar
  73. 73.
    Park, K. J., Kim, H.: Bending of floating flexible legs. Journal of Fluid Mechanics 610, 381–390 (2008)CrossRefzbMATHGoogle Scholar
  74. 74.
    Ji, X. Y., Wang, J.W., Feng, X. Q.: Role of flexibility in the water repellency of water strider: theory and experiment. Physical Review E 85, 021607 (2012)CrossRefGoogle Scholar
  75. 75.
    Quéré, D.: Rough ideas on wetting. Physica A 313, 32–46 (2002)CrossRefGoogle Scholar
  76. 76.
    Saiz, E., Cannon, R. M., Tomsia, A. P.: Reactive spreading: adsorption, ridging and compound formation. Acta Materialia 48, 4449–4462 (2000)CrossRefGoogle Scholar
  77. 77.
    Warren, J. A., Boettinger, W. J.: Modeling reactive wetting. Acta Materialia 46, 3247–3264 (1998)CrossRefGoogle Scholar
  78. 78.
    Iwamoto, C., Tanaka, S.: AtomicMorphology and chemical reactions of the reactive wetting front. Acta Materialia 50, 749–755 (2002)CrossRefGoogle Scholar
  79. 79.
    Chatain, D., Carter, W. C.: Wetting dynamics spreading of metallic drops. Nature Materials 3, 843–845 (2004)CrossRefGoogle Scholar
  80. 80.
    Srolovita, D. J., Davis, S. H.: Do stresses modify wetting angles? Acta Materialia 49, 1005–1007 (2001)CrossRefGoogle Scholar
  81. 81.
    Saiz, E., Tomsia, A. P., Cannon, R. M.: Ridging effects on wetting and spreading of liquids on solids. Acta Materialia 46, 2349–2361 (1998)Google Scholar
  82. 82.
    Spaepen, F.: Substrate curvature resulting from the capillary forces of a liquid drop. Journal of the Mechanics and Physics of Solids 44, 675–681 (1996)CrossRefGoogle Scholar
  83. 83.
    Liu, J. L., Nie, Z. X., Jiang, W. G.: Deformation field of the soft substrate induced by capillary force. Physica B: Condensed Matter 404, 1195–1199 (2009)CrossRefGoogle Scholar
  84. 84.
    Peicet-Camara, R., Auernhammer, G. K., Koynov, K., et al.: Solid-supported thin elastomer films deformed by microdrops. Soft Matter 5, 3529–3772 (2009)CrossRefGoogle Scholar
  85. 85.
    Yu, Y. S., Yang, Z. Y., Zhao, Y. P.: Role of vertical component of surface tension of the droplet on the elastic deformation of PDMS membrane. Journal of Adhesion Science and Technology 22, 687–698 (2008)Google Scholar
  86. 86.
    Yu, Y. S., Zhao, Y. P.: Elastic deformation of soft membrane with finite thickness induced by a sessile liquid droplet. Journal of Colloid and Interface Science 339, 489–494 (2009)CrossRefGoogle Scholar
  87. 87.
    Das, S., Marchand, A., Andreotti, B., et al.: Elastic deformation due to tangential capillary forces. Physics of Fluids 23, 072006 (2011)CrossRefGoogle Scholar
  88. 88.
    Chen, Z. R., Yu, S. W.: Capillary adhesive contact between a spherical rigid punch and a piezoelectric half space. Journal of Applied Physics 94, 6899–6907 (2003)CrossRefGoogle Scholar
  89. 89.
    Haschke, T., Bonaccurso, E., Butt, H.: Sessile-drop-induced bending of atomic force microscope cantilevers: a model system for monitoring microdrop evaporation. Journal of Micromechanics and Microengineering 16, 2273–2280 (2006)CrossRefGoogle Scholar
  90. 90.
    Butt, H., Bonaccurso, E.: Microdrops on Atomic Force Microscope cantilevers: evaporation of water and spring constant calibration. Journal of Physical Chemistry B 109, 253–263 (2005)CrossRefGoogle Scholar
  91. 91.
    Yu, Y. S., Zhao, Y. P.: Deformation of PDMS membrane and microcantilever by a water droplet: comparison between Mooney-Rivlin and linear elastic constitutive models. Journal of Colloid and Interface Science 332, 467–476 (2009)CrossRefGoogle Scholar
  92. 92.
    Liu, J. L., Zhu, X. Y., Li, X. K., et al.: Abnormal bending of micro-cantilever plate induced by a droplet. Acta Mechanica Solida Sinica 23, 428–436 (2010)Google Scholar
  93. 93.
    Zheng, X. P., Zhao, H. P., Gao, L., et al.: Elasticity-driven droplet movement on a microbeam with gradient stiffness. Journal of Colloid and Interface Science 323, 133–140 (2008)CrossRefGoogle Scholar
  94. 94.
    Satyanarayana, S., McCormick, D. T., Majumdar, A.: Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sensors and Actuators B: Chemical 115, 494–502 (2006)CrossRefGoogle Scholar
  95. 95.
    Cohen, A. E., Mahadevan, L.: Kinks, rings, and rackets in filamentous structures. Proceedings of the National Academy of Sciences 100, 12141–12146 (2003)CrossRefGoogle Scholar
  96. 96.
    Neukirch, S., Roman, B., de Gaudemaris, B., et al.: Piercing a liquid surface with an elastic rod: buckling under capillary forces. Journal of the Mechanics and Physics of Solids 55, 1212–1235 (2007)MathSciNetCrossRefGoogle Scholar
  97. 97.
    Chiodi, F., Roman, B., Bico, J.: Piercing an interface with a brush: collaborative stiffening. Europhysics Letters 90, 44006 (2010)CrossRefGoogle Scholar
  98. 98.
    Tawfick, S., Volder, M. D., Hart, A. J.: Structurally programmed capillary folding of vertical carbon nanotube assemblies. Langmuir 27, 6389–6394 (2011)CrossRefGoogle Scholar
  99. 99.
    Wu, X. F., Bedarkar, A., Akhatov, I. S.: Hydroelastic analysis of an axially loaded compliant fiber wetted with a droplet. Journal of Applied Physics 108, 083518 (2010)CrossRefGoogle Scholar
  100. 100.
    Yu, Y., Zhao, Z. H., Zheng, Q. S.: Mechanical and superhydrophobic stabilities of two-scale surfacial structure of lotus leaves. Langmuir 23, 8212–8216 (2007)CrossRefGoogle Scholar
  101. 101.
    Li, B., Jia, F., Cao, Y. P., et al.: Surface wrinkling patterns on a core-shell soft sphere. Physical Review Letters 106, 234301 (2011)CrossRefGoogle Scholar
  102. 102.
    Pauchard, L., Couder, Y.: Invagination during the collapse of an inhomogeneous spheroidal shell. Europhysics Letters 66, 667–673 (2004)CrossRefGoogle Scholar
  103. 103.
    Tsapis, N., Dufresne, E. R., Sinha, S. S., et al.: Onset of buckling in drying droplets of colloidal suspensions. Physical Review Letters 94, 018302 (2005)CrossRefGoogle Scholar
  104. 104.
    Yang, Y., Gao, Y. F., Sun, D. Y., et al.: Capillary force induced structural deformation in liquid infiltrated elastic circular tubes. Physical Review B 81, 241407 (2010)CrossRefGoogle Scholar
  105. 105.
    Grotberg, J. B., Jensen, O. E.: Biofluid mechanics in flexible tubes. Annual Review of Fluid Mechanics 36, 121–147 (2004)MathSciNetCrossRefGoogle Scholar
  106. 106.
    Huang, J., Juszkiewicz, M., de Jeu, W. H., et al.: Capillary wrinkling of floating thin polymer films. Science 317, 650–653 (2007)CrossRefGoogle Scholar
  107. 107.
    Vella, D., Adda-Bedia, M., Cerda, E.: Capillary wrinkling of elastic membranes. Soft Matter 6, 5778–5782 (2010)CrossRefGoogle Scholar
  108. 108.
    Li, B., Cao, Y. P., Feng, X. Q., Gao, H.: Mechanics of morphological instabilities and surface wrinkling in soft materials: A review. Soft Matter 8, 5728–5745 (2012).CrossRefGoogle Scholar
  109. 109.
    King, H., Schroll, R. D., Davidovitch, B., et al.: Elastic sheet on a liquid drop reveals wrinkling and crumpling as distinct symmetry-breaking instabilities. Proceedings of the National Academy of Sciences 109, 9716–9720 (2012)CrossRefGoogle Scholar
  110. 110.
    Brinkmann, M., Lipowsky, R.: Wetting morphologies on substrates with striped surface domains. Journal of Applied Physics 92, 4296–4306 (2002)CrossRefGoogle Scholar
  111. 111.
    Boreyko, J. B., Chen, C. H.: Self-propelled jumping drops on superhydrophobic surfaces. Physics of Fluids 22, 091110 (2010)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Pipeline and Civil EngineeringChina University of PetroleumQingdaoChina
  2. 2.Institute of Biomechanics and Medical Engineering, Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations