Acta Mechanica Sinica

, Volume 28, Issue 4, pp 941–950 | Cite as

Computational and theoretical modeling of intermediate filament networks: Structure, mechanics and disease

  • Zhao QinEmail author
  • Markus J. BuehlerEmail author
Review Article


Intermediate filaments, in addition to microtubules and actin microfilaments, are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that in most cells, intermediate filament proteins play key roles to reinforce cells subjected to large-deformation, and that they participate in signal transduction, and it was proposed that their nanomechanical properties are critical to perform those functions. However, it is still poorly understood how the nanoscopic structure, as well as the combination of chemical composition, molecular structure and interfacial properties of these protein molecules contribute to the biomechanical properties of filaments and filament networks. Here we review recent progress in computational and theoretical studies of the intermediate filaments network at various levels in the protein’s structure. A multiple scale method is discussed, used to couple molecular modeling with atomistic detail to larger-scale material properties of the networked material. It is shown that a finer-trains-coarser methodology as discussed here provides a useful tool in understanding the biomechanical property and disease mechanism of intermediate filaments, coupling experiment and simulation. It further allows us to improve the understanding of associated disease mechanisms and lays the foundation for engineering the mechanical properties of biomaterials.


Intermediate filament network Multiple scale method Nanoscopic structure Mechanics Disease mechanism Molecular mechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ishikawa, H., Bischoff, R., Holtzer, H.: Mitosis and intermediate-sized filaments in developing skeletal muscle. Journal of Cell Biology 38, 538–555 (1968)CrossRefGoogle Scholar
  2. 2.
    Herrmann, H., Bar, H., Kreplak, L., et al.: Intermediate filaments: from cell architecture to nanomechanics. Nature Reviews Molecular Cell Biology 8, 562–573 (2007)CrossRefGoogle Scholar
  3. 3.
    Omary, M. B., Coulombe, P. A., McLean, W. H. I.: Mechanisms of disease: Intermediate filament proteins and their associated diseases. New England Journal of Medicine 351, 2087–2100 (2004)CrossRefGoogle Scholar
  4. 4.
    Hearle, J. W. S.: A critical review of the structural mechanics of wool and hair fibres. International Journal of Biological Macromolecules 27, 123–138 (2000)CrossRefGoogle Scholar
  5. 5.
    Kreplak, L., Fudge, D.: Biomechanical properties of intermediate filaments: from tissues to single filaments and back. Bioessays 29, 26–35 (2007)CrossRefGoogle Scholar
  6. 6.
    Chang, L., Goldman, R. D.: Intermediate filaments mediate cytoskeletal crosstalk. Nature ReviewsMolecular Cell Biology 5, 601–613 (2004)CrossRefGoogle Scholar
  7. 7.
    Strelkov, S. V., Herrmann, H., Aebi, U.: Molecular architecture of intermediate filaments. Bioessays 25, 243–251 (2003)CrossRefGoogle Scholar
  8. 8.
    Moll, R., Divo, M., Langbein, L.: The human keratins: biology and pathology. Histochemistry and Cell Biology 129, 705–733 (2008)CrossRefGoogle Scholar
  9. 9.
    Jafari, S. S., Maxwell, W. L., Neilson, M., et al.: Axonal cytoskeletal changes after non-disruptive axonal injury. Journal of Neurocytology 26, 207–221 (1997)CrossRefGoogle Scholar
  10. 10.
    Dahl, K. N., Kahn, S. M., Wilson, K. L., et al.: The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J. Cell. Sci. 117, 4779–4786 (2004)CrossRefGoogle Scholar
  11. 11.
    Wilson, K. L., Zastrow, M. S., Lee, K. K.: Lamins and disease: Insights into nuclear infrastructure. Cell 104, 647–650 (2001)Google Scholar
  12. 12.
    Wang, N., Stamenovic, D.: Mechanics of vimentin intermediate filaments. J. Muscle Res. Cell. Motil. 23, 535–540 (2002)CrossRefGoogle Scholar
  13. 13.
    Buehler, M. J., Yung, Y. C.: Deformation and failure of protein materials in physiologically extreme conditions and disease. Nature Materials 8, 175–188 (2009)CrossRefGoogle Scholar
  14. 14.
    Eriksson, M., Brown, W. T., Gordon, L. B., et al.: Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423, 293–298 (2003)CrossRefGoogle Scholar
  15. 15.
    Dahl, K. N., Scaffidi, P., Islam, M. F., et al.: Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome. Proceedings of the National Academy of Sciences of the United States of America 103, 10271–10276 (2006)CrossRefGoogle Scholar
  16. 16.
    Lin, Y. C., Broedersz, C. P., Rowat, A. C., et al.: Divalent cations crosslink vimentin intermediate filament tail domains to regulate network mechanics. Journal of Molecular Biology 399, 637–644 (2010)CrossRefGoogle Scholar
  17. 17.
    Zhang, H., Ackbarow, T., Buehler, M. J.: Muscle dystrophy single point mutation in the 2B segment of lamin A does not affect the mechanical properties at the dimer level. Journal of Biomechanics 41, 1295–1301 (2008)CrossRefGoogle Scholar
  18. 18.
    Nicolet, S., Herrmann, H., Aebi, U., et al.: Atomic structure of vimentin coil 2. Journal of Structural Biology 170, 369–376 (2010)CrossRefGoogle Scholar
  19. 19.
    Luca, S., Yau, W. M., Leapman, R., et al.: Peptide conformation and supramolecular organization in amylin fibrils: Constraints from solid-state NMR. Biochemistry 46, 13505–13522 (2007)CrossRefGoogle Scholar
  20. 20.
    Goldie, K. N., Wedig, T., Mitra, A. K., et al.: Dissecting the 3-D structure of vimentin intermediate filaments by cryoelectron tomography. Journal of Structural Biology 158, 378–385 (2007)CrossRefGoogle Scholar
  21. 21.
    Lee, H. L. D., Sahl, S. J., Lew, M. D., et al.: The doublehelix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision. Applied Physics Letters 100, 153701 (2012)CrossRefGoogle Scholar
  22. 22.
    Zagrovic, B., Snow, C. D., Shirts, M. R., et al.: Simulation of folding of a small alpha-helical protein in atomistic detail using worldwide-distributed computing. Journal of Molecular Biology 323, 927–937 (2002)CrossRefGoogle Scholar
  23. 23.
    Khatib, F., DiMaio, F., Cooper, S., et al.: Crystal structure of a monomeric retroviral protease solved by protein folding game players. Nature Structural&Molecular Biology 18, 1175–1177 (2011)CrossRefGoogle Scholar
  24. 24.
    Buehler, M. J., Keten, S.: Colloquium: Failure of molecules, bones, and the Earth itself. Reviews of Modern Physics 82, 1459–1487 (2010)CrossRefGoogle Scholar
  25. 25.
    Rauscher, S., Pomes, R.: Molecular simulations of protein disorder. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire 88, 269–290 (2010)CrossRefGoogle Scholar
  26. 26.
    Zwanzig, R., Szabo, A., Bagchi, B.: Levinthal’s paradox. Proc Natl Acad Sci USA 89, 20–22 (1992)CrossRefGoogle Scholar
  27. 27.
    del Rio, A., Perez-Jimenez, R., Liu, R. C., et al.: Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009)CrossRefGoogle Scholar
  28. 28.
    Keten, S., Buehler, M. J.: Nanostructure and molecular mechanics of spider dragline silk protein assemblies. J. R. Soc. Interface 7, 1709–1721 (2010)CrossRefGoogle Scholar
  29. 29.
    Bates, G.: Huntingtin aggregation and toxicity in Huntington’s disease. Lancet 361, 1642–1644 (2003)CrossRefGoogle Scholar
  30. 30.
    Qin, Z., Kalinowski, A., Dahl, K. N., et al.: Structure and stability of the lamin A tail domain and HGPS mutant. Journal of Structural Biology 175, 425–433 (2011)CrossRefGoogle Scholar
  31. 31.
    Sugita, Y., Okamoto, Y.: Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters 314, 141–151 (1999)CrossRefGoogle Scholar
  32. 32.
    Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., et al.: Charmm — a program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry 4, 187–217 (1983)CrossRefGoogle Scholar
  33. 33.
    Ackbarow, T., Buehler, M. J.: Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: atomistic and continuum studies. Journal of Materials Science 42, 8771–8787 (2007)CrossRefGoogle Scholar
  34. 34.
    Sotomayor, M., Schulten, K.: Single-molecule experiments in vitro and in silico. Science 316, 1144–1148 (2007)CrossRefGoogle Scholar
  35. 35.
    Qin, Z., Kreplak, L., Buehler, M. J.: Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments. PLoS One 4, e7294 (2009)CrossRefGoogle Scholar
  36. 36.
    Qin, Z., Buehler, M. J.: Molecular dynamics simulation of the alpha-helix to beta-sheet transition in coiled protein filaments: evidence for a critical filament length scale. Phys. Rev. Lett. 104, 198304 (2010)CrossRefGoogle Scholar
  37. 37.
    Keten, S., Buehler, M. J.: Asymptotic strength limit of hydrogen-bond assemblies in proteins at vanishing pulling rates. Phys. Rev. Lett. 100, 198301 (2008)CrossRefGoogle Scholar
  38. 38.
    Kreplak, L., Bar, H.: Severe myopathy mutations modify the nanomechanics of desmin intermediate filaments. J. Mol. Biol. 385, 1043–1051 (2009)CrossRefGoogle Scholar
  39. 39.
    Parbhu, A. N., Bryson, W. G., Lal, R.: Disulfide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: Correlative nano-indentation and elasticity measurement with an AFM. Biochemistry 38, 11755–11761 (1999)CrossRefGoogle Scholar
  40. 40.
    Wiita, A. P., Ainavarapu, S. R. K., Huang, H. H., et al.: Forcedependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proceedings of the National Academy of Sciences of the United States of America 103, 7222–7227 (2006)CrossRefGoogle Scholar
  41. 41.
    Wiche, G.: Role of plectin in cytoskeleton organization and dynamics. Journal of Cell Science 111, 2477–2486 (1998)Google Scholar
  42. 42.
    Keten, S., Chou, C. C., van Duin, A. C. T., et al.: Tunable nanomechanics of protein disulfide bonds in redox microenvironments. Journal of the Mechanical Behavior of Biomedical Materials 5, 32–40 (2012)CrossRefGoogle Scholar
  43. 43.
    Aryanpour, M., van Duin, A. C. T., Kubicki, J. D.: Development of a reactive force field for iron-oxyhydroxide systems. Journal of Physical Chemistry A 114, 6298–6307 (2010)CrossRefGoogle Scholar
  44. 44.
    Chenoweth, K., van Duin, A. C. T, Goddard, W. A.: ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Journal of Physical Chemistry A 112, 1040–1053 (2008)CrossRefGoogle Scholar
  45. 45.
    Buehler, M. J.: Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture, and selfassembly. Journal ofMaterials Research 21, 1947–1961 (2006)CrossRefGoogle Scholar
  46. 46.
    Buehler, M. J., Tang, H., van Duin, A. C. T., et al.: Threshold crack speed controls dynamical fracture of silicon single crystals. Physical Review Letters 99, 165502 (2007)CrossRefGoogle Scholar
  47. 47.
    Goldberg, M. W., Fiserova, J., Huttenlauch, I., et al.: A new model for nuclear lamina organization. Biochemical Society Transactions 36, 1339–1343 (2008)CrossRefGoogle Scholar
  48. 48.
    Krimm, I., Ostlund, C., Gilquin, B., et al.: The Ig-like structure of the c-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. Structure 10, 811–823 (2002)CrossRefGoogle Scholar
  49. 49.
    Tama, F., Gadea, F. X., Marques, O., et al.: Building-block approach for determining low-frequency normal modes of macromolecules. Proteins-Structure Function and Genetics 41, 1–7 (2000)CrossRefGoogle Scholar
  50. 50.
    Xu, Z. P., Paparcone, R., Buehler, M. J.: Alzheimer’s a beta(1–40) amyloid fibrils feature size-dependent mechanical properties. Biophysical Journal 98, 2053–2062 (2010)CrossRefGoogle Scholar
  51. 51.
    Barducci, A., Bussi, G., Parrinello, M.: Well-tempered metadynamics: A smoothly converging and tunable free-energy method. Physical Review Letters 100, 020603 (2008)CrossRefGoogle Scholar
  52. 52.
    Wilhelmsen, K., Litjens, S. H. M., Kuikman, I., et al.: Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. Journal of Cell Biology 171, 799–810 (2005)CrossRefGoogle Scholar
  53. 53.
    Ostlund, C., Folker, E. S., Choi, J. C., et al.: Dynamics and molecular interactions of linker of nucleoskeleton and cytoskeleton (LINC) complex proteins. Journal of Cell Science 122, 4099–4108 (2009)CrossRefGoogle Scholar
  54. 54.
    Kim, H., Nakamura, F., Lee, W., et al.: Filamin A is required for vimentin-mediated cell adhesion and spreading. American Journal of Physiology-Cell Physiology 298, C221-C236 (2010)Google Scholar
  55. 55.
    Lindstrom, S. B., Vader, D. A., Kulachenko, A., et al.: Biopolymer network geometries: Characterization, regeneration, and elastic properties. Physical Review E 82, 051905 (2010)CrossRefGoogle Scholar
  56. 56.
    Lin, Y. C., Yao, N. Y., Broedersz, C. P., et al.: Origins of elasticity in intermediate filament networks. Physical Review Letters 104, 058101 (2010)CrossRefGoogle Scholar
  57. 57.
    Panorchan, P., Schafer, B. W., Wirtz, D., et al.: Nuclear envelope breakdown requires overcoming the mechanical integrity of the nuclear lamina. J. Biol. Chem. 279, 43462–43467 (2004)CrossRefGoogle Scholar
  58. 58.
    Qin, Z., Buehler, M. J.: Mechanical properties of crosslinks controls failure mechanism of hierarchical intermediate filament networks. Theoretical and Applied Mechanics Letters 2, 014005 (2012)CrossRefGoogle Scholar
  59. 59.
    Cranford, S. W., Tarakanova, A., Pugno, N. M., et al.: Nonlinear material behaviour of spider silk yields robust webs. Nature 482, 72–76 (2012)CrossRefGoogle Scholar
  60. 60.
    Kreplak, L., Herrmann, H., Aebi, U.: Tensile properties of single desmin intermediate filaments. Biophysical Journal 94, 2790–2799 (2008)CrossRefGoogle Scholar
  61. 61.
    Qin, Z., Buehler, M. J.: Flaw tolerance of nuclear intermediate filament lamina under extreme mechanical deformation. ACS Nano 5, 3034–3042 (2011)CrossRefGoogle Scholar
  62. 62.
    Cotter, L., Allen, T. D., Kiseleva, E., et al.: Nuclear membrane disassembly and rupture. Journal of Molecular Biology 369, 683–695 (2007)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratory for Atomistic and Molecular Mechanics (LAMM)Department of Civil and Environmental EngineeringCambridgeUSA
  2. 2.Center for Computational EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Center for Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations