Advertisement

Acta Mechanica Sinica

, Volume 28, Issue 2, pp 324–334 | Cite as

A hybrid vertex-centered finite volume/element method for viscous incompressible flows on non-staggered unstructured meshes

  • Wei GaoEmail author
  • Ru-Xun Liu
  • Hong Li
Research Paper
  • 220 Downloads

Abstact

This paper proposes a hybrid vertex-centered finite volume/finite element method for solution of the two dimensional (2D) incompressible Navier-Stokes equations on unstructured grids. An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling. The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by joining the centroid of cells sharing the common vertex. For the temporal integration of the momentum equations, an implicit second-order scheme is utilized to enhance the computational stability and eliminate the time step limit due to the diffusion term. The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite element method (FEM). The momentum interpolation is used to damp out the spurious pressure wiggles. The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both velocity and pressure. The classic test cases, the lid-driven cavity flow, the skew cavity flow and the backward-facing step flow, show that numerical results are in good agreement with the published benchmark solutions.

Keywords

Incompressible flow Vertex-centered finite volume method Finite element method Unstructured grid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass and momentum transfer i three-dimensional parabolic flows. Int. J. Heat. Mass. Transfer. 15, 1787–1806 (1972)zbMATHCrossRefGoogle Scholar
  2. 2.
    Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comp. 22, 745–762 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Temam, R.: Sur l’approximation de la solution del equations Navier-Stokes par la methode des pas fractionnaires (II). Arch. Rat. Mech. Anal. 32, 377–385 (1969)CrossRefGoogle Scholar
  4. 4.
    Ferziger, J.H., Perić, M.: Computational methods of fluid dynamics (3rd edition). Springer-Verlag, 2002Google Scholar
  5. 5.
    van Kan J.: A second-order accurate pressure-correction shceme for viscous incompressible flow. SIAMJ. Sci. Stat. Comput. 3, 870–891(1986)Google Scholar
  6. 6.
    Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59, 308–323 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Brown, D.L., Cortez, R., Minion, M.L.: Accurate projection methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 168, 464–499 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Timmerans, L.J.P., Minev, P.D., Vosse, F.N.V.D.: An approximate projection scheme for incompressible flow using spectral elements. Int. J. Numer. Meth. Fluids 22, 673–688 (1996)CrossRefGoogle Scholar
  9. 9.
    Rhie, C.M., Chow, W.L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983)zbMATHCrossRefGoogle Scholar
  10. 10.
    Zang, Y., Street, R.L., Koseff, J.R.: A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates. J. Comput. Phys. 114, 18–33 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Boivin, S., Cayré, F., Hérard, J.M.: A finite volume method to solve the Navier-Stokes equations for incompresible flows on unstructured meshes. Int. J. Therm. Sci. 39, 806–825 (2000)CrossRefGoogle Scholar
  12. 12.
    Kim, D., Choi, H.: A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids. J. Comput. Phys. 162, 411–428 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Tu, S., Aliabadi, S.: Development of a hybrid finite voluem/element solver for incopressible fows. Int. J. Numer. Meth. Fluids 55, 177–203 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Gresho, P.M.: On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent matrix, Part 1: Theroy. Int. J. Numer. Methods Fluids 11, 587–620 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Khosla, P.K., Rubin, S.G.: A diagnoally dominant second-order accurate implicit scheme. Computers and Fluids, 2, 207–209 (1974)zbMATHCrossRefGoogle Scholar
  16. 16.
    Mathur, S.R., Murthy, J.Y.: A pressure-based method for unstructured meshes. Numer. Heat Transfer., Part B 31, 195–215 (1997)CrossRefGoogle Scholar
  17. 17.
    Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)zbMATHCrossRefGoogle Scholar
  18. 18.
    Gartling, D.K.: A test problem for outflow boundary conditions-flow over a backward-facing step. Int. J. Numer. Methods Fluids 11, 953–967 (1990)CrossRefGoogle Scholar
  19. 19.
    Timmermans, L.J.P., Minev, P.D., Vosse, F.N.V.D.: an approximate projection scheme for incompressible flow using spectral element. Int. J. Numer. Methods Fluids 22, 673–688 (1996)zbMATHCrossRefGoogle Scholar
  20. 20.
    Guermond, J.L., Shen, J.: On the error estimates for the rotational pressure-correction projection methods. Math. Comput. 73, 1719–1737 (2004)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Perron, S., Boivin, S., Hérard, J.M.: A finite volume method to solve the 3D Navier-Stokes equations on unstructured collocated meshes. Comput.and Fluids 33, 1305–1333 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Demirdzic, I., Lilek, Z., Peric, M.: Fluid flow and heat transfer test problems for non-orthogonal grids: bench-mark solutions. Int. J. Numer. Methods Fluids 15, 329–354 (1992)CrossRefGoogle Scholar
  23. 23.
    Despotis, G.K., Tsanggris, S.: Fractional step method for solution of incompressible Navier-Stokes equations on unstructured triangular meshes. Int. J. Numer. Methods Fluids 20, 1273–1288 (1995)zbMATHCrossRefGoogle Scholar
  24. 24.
    Kobayashi, M.H., Pereira, J.M.C., Pereira J.C.F.: A consertive finite-volume second-order accurate projection method on hybrid unstructured grids. J. Comput. Phys. 150, 40–75 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Vidović, D., Segal, A., Wesseling, P.: A superlinearly convergent finite volume method for the incompressible Navier-Stokes equations on staggered unstructured grids. J. Comput. Phys. 198, 159–177 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Jan, Y.J., Sheu, T.W.H.: A quasi-implicit time advancing scheme for unsteady incompressible flow. Part I: Validation. Comput. Methods Appl. Mech. Engrg. 196, 4755–4770 (2007)zbMATHCrossRefGoogle Scholar
  27. 27.
    Chénier, E., Eymard, R., Touazi, O.: Numerical results using a colocated finite-volume scheme on unstructured grids for incompressible fluid flows. Numer. Heat Transfer., Part B 49, 259–276 (2006)CrossRefGoogle Scholar
  28. 28.
    Foy, B., Dawes, W.: Unstructured pressure-correction solver based on a consistent discretization of the Poisson equation. Int. J. Numer. Meth. Fluids 34, 463–478 (2000)zbMATHCrossRefGoogle Scholar
  29. 29.
    Mavriplis, D.J.: Accurate multigrid solution of the Euler equations on unstructured and adaptive meshes. AIAA Journal 28, 213–221 (1990)CrossRefGoogle Scholar
  30. 30.
    Armaly, B.F., Durst, F., Pereira, J.C.F., et al.: Experimental and theoretical investigation of backward-facing flow. J. Fluid Mech. 127, 473–496 (1983)CrossRefGoogle Scholar
  31. 30.
    Barton, I.E.: The entrance effect of laminar flow over a backward-facing step geometry. Int. J. Numer. Meth. Fluids 25, 633–644 (1997)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Mathematical SciencesInner Mongolia UniversityHuhhotChina
  2. 2.Department of MathematicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations