Acta Mechanica Sinica

, Volume 28, Issue 5, pp 1323–1330 | Cite as

The effect of agglomerate on micro-structural evolution in solid-state sintering

Research Paper


Discrete element method (DEM) is used in the present paper to simulate the microstructural evolution of a planar layer of copper particles during sintering. Formation of agglomerates and the effect of their rearrangement on densification are mainly focused on. Comparing to the existing experimental observations, we find that agglomerate can form spontaneously in sintering and its rearrangement could accelerate the densification of compacts. Snapshots of numerical simulations agree qualitatively well with experimental observations. The method could be readily extended to investigate the effect of agglomerate on sintering in a three-dimensional model, which should be very useful for understanding the evolution of microstructure of sintering systems.


Solid-state sintering Discrete element method Agglomerate Densification Micro-structural evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Petzow, G., Exner, H.E.: Particle rearrangement in solid-state sintering. Z. Metallk. 67, 611–618 (1976)Google Scholar
  2. 2.
    Wonisch, A., Kraft, T., Moseler, M., et al.: Effect of different particle size distributions on solid-state sintering: A microscopic simulation approach. J. Am. Ceram. Soc. 92, 1428–1434 (2009)CrossRefGoogle Scholar
  3. 3.
    Martin, C.L., Camacho-Montes, H., Olmos, L., et al.: Evolution of defects during sintering: discrete element simulations. J. Am. Ceram. Soc. 92, 1435–1441 (2009)CrossRefGoogle Scholar
  4. 4.
    Martin, C.L., Bordia, R.K.: The effect of a substrate on the sintering of constrained films. Acta Mater. 57, 549–558 (2009)CrossRefGoogle Scholar
  5. 5.
    Wonisch, A., Kraft, T., Moseler, M., et al.: Discrete element simulations of constrained ceramic powder sintering Ceramic forum international: CFI. Berichte der Deutschen Keramischen Gesellschaft 85, 18–23 (2008)Google Scholar
  6. 6.
    Wonisch, A., Guillon, O., Kraft, T., et al.: Stress-induced anisotropy of sintering alumina: Discrete element modelling and experiments. Acta Mater. 55, 5187–5199 (2007)CrossRefGoogle Scholar
  7. 7.
    Henrich, B., Wonisch, A., Kraft, T., et al.: Simulations of the influence of rearrangement during sintering. Acta Mater. 55, 753–762 (2007)CrossRefGoogle Scholar
  8. 8.
    Wonisch, A., Kraft, T., Riedel, H.: Multi-scale simulations of rearrangement effects and anisotropic behaviour during sintering. Advances in Science and Technology 45, 530–538 (2006)CrossRefGoogle Scholar
  9. 9.
    Martin, C.L., Schneider, L.C.R., Olmos, L., et al.: Discrete element modeling of metallic powder sintering. Scr. Mater. 55, 425–428 (2006)CrossRefGoogle Scholar
  10. 10.
    Parhami, F., McMeeking, R.M.: A network model for initial stage sintering. Mech. Mater. 27, 111–124 (1998)CrossRefGoogle Scholar
  11. 11.
    Nikolic, Z.S.: A model for 3-d study of rearrangement in liquid phase sintering. Z. Metallk. 95, 993–1000 (2004)Google Scholar
  12. 12.
    Weiser, M.W., Dejonghe, L.C.: Rearrangement during sintering in two-dimensional arrays. J. Am. Ceram. Soc. 69, 822–826 (1986)CrossRefGoogle Scholar
  13. 13.
    Martin, C.L., Bouvard, D., Shima, S.: Study of particle rearrangement during powder compaction by the discrete element method. J. Mech. Phys. Solids 51, 667–693 (2003)MATHCrossRefGoogle Scholar
  14. 14.
    Jagota, A., Scherer, G.W.: Viscosities and sintering rates of composite packings of spheres. J. Am. Ceram. Soc. 78, 521–528 (1995)CrossRefGoogle Scholar
  15. 15.
    Lange, F.F.: Sinterability of agglomerated powders. J. Am. Ceram. Soc. 67(2), 83–89 (1984)CrossRefGoogle Scholar
  16. 16.
    Exner, H.E., Muller, C.: Particle rearrangement and pore space coarsening during solid-state sintering. J. Am. Ceram. Soc. 92, 1384–1390 (2009)CrossRefGoogle Scholar
  17. 17.
    Lange, F.F., Metcalf, M.: Processing-related fracture origins. 2. Agglomerate motion and cracklike internal surfaces caused by differential sintering. J. Am. Ceram. Soc. 66, 398–406 (1983)CrossRefGoogle Scholar
  18. 18.
    Ciftcioglu, M., Akinc, M., Burkhart, L.: Effect of agglomerate strength on sintered density for yttria powders containing agglomerates of monosize spheres. J. Am. Ceram. Soc. 70, C329–C334 (1987)CrossRefGoogle Scholar
  19. 19.
    Kuo, J., Bourell, D.L.: Structural evolution during calcination of sol-gel synthesized alumina and alumina-8 vol% zirconia composite. J. Mater. Sci. 32, 2687–2692 (1997)CrossRefGoogle Scholar
  20. 20.
    Palmero, P., Lombardi, M., Montanaro, L., et al.: Effect of heating rate on phase and microstructural evolution during pressureless sintering of a nanostructured transition alumina. Int. J. Appl. Ceram. Technol. 6, 420–430 (2009)CrossRefGoogle Scholar
  21. 21.
    Martin, C.L., Bouvard, D., Delette, G.: Discrete element simulations of the compaction of aggregated ceramic powders. J. Am. Ceram. Soc. 89, 3379–3387 (2006)CrossRefGoogle Scholar
  22. 22.
    Kim, J.C., Auh, K.H., Martin, D.M.: Multi-level particle packing model of ceramic agglomerates. Model. Simul. Mater. Sci. Eng. 8, 159–168 (2000)CrossRefGoogle Scholar
  23. 23.
    Exner, H.E., Petzow, G.: Shrinkage and rearrangement during sintering of glass spheres. In: Kuczynski, G.C. ed. Sintering and Catalysis. Plenum Press Publ. Corp., New York, 279–293 (1975)Google Scholar
  24. 24.
    Claussen, N., Exner, H.E.: Influence of sintering on fine powder compacts for catalyst application. Powder Metall. 15, 202–215 (1972)Google Scholar
  25. 25.
    Ada, K., Onal, M., Sarikaya, Y.: Investigation of the intraparticle sintering kinetics of a mainly agglomerated alumina powder by using surface area reduction. Powder Technol. 168, 37–41 (2006)CrossRefGoogle Scholar
  26. 26.
    Kadushnikov, R.M., Alievskii, D.M., Alievskii, V.M., et al.: Computer-simulation for microstructure evolution in a polydisperse material on sintering. 2. Zoned segregation. Sov. Powder Metall. Met. Ceram. 30, 356–360 (1991)CrossRefGoogle Scholar
  27. 27.
    Kadushnikov, R.M., Alievskii, D.M., Alievskii, V.M., et al.: Computer modeling of the evolution of the microstructure of polydisperse materials in sintering. 1. Principal postulates. Sov. Powder Metall. Met. Ceram. 30, 106–111 (1991)CrossRefGoogle Scholar
  28. 28.
    Kadushnikov, R.M., Skorokhod, V.V.: Simulating zonal segregation in powder sintering. Sov. Powder Metall. Met. Ceram. 30, 557–561 (1991)Google Scholar
  29. 29.
    Thornton, C., Antony, S.: Quasi-static deformation of particulate media. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2763–2782 (1998)Google Scholar
  30. 30.
    Thornton, C., Antony, S.J.: Quasi-static shear deformation of a soft particle system. Powder Technol. 109, 179–191 (2000)CrossRefGoogle Scholar
  31. 31.
    Olmos, L., Martin, C.L., Bouvard, D., et al.: Investigation of the sintering of heterogeneous powder systems by synchrotron microtomography and discrete element simulation. J. Am. Ceram. Soc. 92, 1492–1499 (2009)CrossRefGoogle Scholar
  32. 32.
    Cundall, P.A., Strack, O.D.L.: Discrete numerical-model for granular assemblies. Geotechnique 29, 47–65 (1979)CrossRefGoogle Scholar
  33. 33.
    Wang, D., Zhou, Y.: Particle dynamics in dense shear granular flow. Acta Mech. Sin. 26, 91–100 (2010)CrossRefGoogle Scholar
  34. 34.
    Olmos, L., Martin, C.L., Bouvard, D.: Sintering of mixtures of powders: experiments and modelling. Powder Technol. 190, 134–140 (2009)CrossRefGoogle Scholar
  35. 35.
    Bouvard, D., McMeeking, R.M.: Deformation of interparticle necks by diffusion-controlled creep. J. Am. Ceram. Soc. 79, 666–672 (1996)CrossRefGoogle Scholar
  36. 36.
    Parhami, F., McMeeking, R.M.: A network model for initial stage sintering. Mech. Mater. 27, 111–124 (1998)CrossRefGoogle Scholar
  37. 37.
    Braginsky, M., Tikare, V., Olevsky, E.: Numerical simulation of solid state sintering. Int. J. Solids Struct. 42, 621–636 (2005)MATHCrossRefGoogle Scholar
  38. 38.
    Tikare, V., Braginsky, M., Bouvard, D., et al.: Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3d powder compact. Comput. Mater. Sci. 48, 317–325 (2010)CrossRefGoogle Scholar
  39. 39.
    Riedel, H., Zipse, H., Svoboda, J.: Equilibrium pore surfaces, sintering stresses and constitutive equations for the intermediate and late stages of sintering-ii. Diffusional densification and creep. Acta Metallurgica et Materialia 42, 445–452 (1994)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Nonlinear Mechanics, Institute of MechanicsChinese Academy of SciencesBeijingChina

Personalised recommendations