Acta Mechanica Sinica

, Volume 28, Issue 1, pp 34–40

Boundary layer flow over a moving surface in a nanofluid with suction or injection

Research Paper

Abstract

An analysis is performed to study the heat transfer characteristics of steady two-dimensional boundary layer flow past a moving permeable flat plate in a nanofluid. The effects of uniform suction and injection on the flow field and heat transfer characteristics are numerically studied by using an implicit finite difference method. It is found that dual solutions exist when the plate and the free stream move in the opposite directions. The results indicate that suction delays the boundary layer separation, while injection accelerates it.

Keywords

Nanofluid Moving plate Boundary layer Suction/injection Dual solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer, D.A., Wang, H.P. eds. Developments and Applications of Non-Newtonian Flows. FEDvol. 231 66, 99–105 (1995)Google Scholar
  2. 2.
    Abu-Nada, E.: Application of nanofluids for heat transfer enhancement of separated flow encountered in a backward facing step. Int. J. Heat Fluid Flow 29, 242–249 (2008)CrossRefGoogle Scholar
  3. 3.
    Abu-Nada, E., Oztop, H.F.: Effect of inclination angle on natural convection in enclosures filled with Cu-water nanofluid. Int. J. Heat Fluid Flow 30, 669–678 (2009)CrossRefGoogle Scholar
  4. 4.
    Bachok, N., Ishak, A., Pop, I.: Boundary layer flow of nanofluids over a moving surface in a flowing fluid. Int. J. Thermal Sci. 49, 1663–1668 (2010)CrossRefGoogle Scholar
  5. 5.
    Bachok, N., Ishak, A., Pop, I.: Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid. Physica B 405, 4914–4918 (2010)CrossRefGoogle Scholar
  6. 6.
    Bachok, N., Ishak, A., Pop, I.: Flow and heat transfer over a rotating porous disk in a nanofluid. Physica B406, 1767–1772 (2011)CrossRefGoogle Scholar
  7. 7.
    Yacob, N.A., Ishak, A., Pop, I.: Falkner-Skan problem for a static or moving wedge in nanofluids. Int. J. Thermal Sci. 50, 133–139 (2011)CrossRefGoogle Scholar
  8. 8.
    Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Transfer 128, 240–250 (2006)CrossRefGoogle Scholar
  9. 9.
    Kuznetsov, A.V., Nield, D.A.: Natural convective boundary layer flow of a nanofluid past a vertical plate. Int. J. Thermal Sci. 49, 243–247 (2010)CrossRefGoogle Scholar
  10. 10.
    Lotfi, R., Saboohi, Y., Rashidi, A.M.: Numerical study of forced convective heat transfer of nanofluids: comparison of difference approaches. Int. Comm. Heat Mass Transfer 37, 74–78 (2010)CrossRefGoogle Scholar
  11. 11.
    Nield, D.A., Kuznetsov, A.V.: The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer 52, 5792–5795 (2009)MATHCrossRefGoogle Scholar
  12. 12.
    Oztop, H.F., Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Mass Transfer 29, 1326–1336 (2008)Google Scholar
  13. 13.
    Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transfer 50, 2002–2018 (2007)MATHCrossRefGoogle Scholar
  14. 14.
    Das S.K., Choi S.U.S., Yu W., et al.: Nanofluids: Science and Technology. Wiley, New Jersey (2007)CrossRefGoogle Scholar
  15. 15.
    Buongiorno J.: Convective transport in nanofluids. ASME J. Heat Transfer 128, 240–250 (2006)CrossRefGoogle Scholar
  16. 16.
    Daungthongsuk W., Wongwises S.: A critical review of convective heat transfer nanofluids. Renew. Sustain. Eng. Rev. 11, 797–817 (2007)CrossRefGoogle Scholar
  17. 17.
    Trisaksri V., Wongwises, S.: Critical review of heat transfer characteristics of nanofluids. Renew. Sustain. Energy Rev. 11, 512–523 (2007)CrossRefGoogle Scholar
  18. 18.
    Wang X.-Q, Mujumdar A.S.: Heat transfer characteristics of nanofluids: a review. Int. J. Thermal Sci. 46, 1–19 (2007)MATHCrossRefGoogle Scholar
  19. 19.
    Wang X.-Q., Mujumdar A.S.: A review on nanofluids—Part I: theoretical and numerical investigations. Brazilian J. Chem. Eng. 25, 613–630 (2008)Google Scholar
  20. 20.
    Wang X.-Q., Mujumdar A.S.: A review on nanofluids—Part II: experiments and applications. Brazilian J. Chem. Eng. 25, 631–648 (2008)CrossRefGoogle Scholar
  21. 21.
    Kakaç S., Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transfer 52, 3187–3196 (2009)MATHCrossRefGoogle Scholar
  22. 22.
    Rohni, A.M., Ahmad, S., Pop, I.: Boundary layer flow over a moving surface in a nanofluid beneath a uniform free stream. Int. J. Numerical Methods for Heat and Fluid Flow 21(7), 828–846 (2010)CrossRefGoogle Scholar
  23. 23.
    Al-Sanea, S.A.: Mixed convection heat transfer along a continuously moving heated vertical plate with suction or injection. Int. J. Heat Mass Transf. 47, 1445–1465 (2004)MATHCrossRefGoogle Scholar
  24. 24.
    Chaudhary, M.A., Merkin, J.H.: The effect of blowing and suction on free convection boundary layers on vertical surface with prescribed heat flux. J. Eng. Math. 27, 265–292 (1993)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Merkin, J.H.: A note on the similarity equations arising in free convection boundary layers with blowing and suction. J. Appl. Math. Phys. (ZAMP) 45, 258–274 (1994)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Weidman, P.D., Kubitschek, D.G., Davis, A.M.J.: The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int. J. Eng. Sci. 44, 730–737 (2006)MATHCrossRefGoogle Scholar
  27. 27.
    Ishak, A., Nazar, R., Pop, I.: Boundary layer on a moving wall with suction and injection. Chin. Phys. Lett. 24, 2274–2276 (2007)CrossRefGoogle Scholar
  28. 28.
    Zheng, L., Wang, L., Zhang, X.: Analytic solutions of unsteady boundary flow and heat transfer on a permeable stretching sheet with non-uniform heat source/sink. Commun. Nonlinear Sci. Numer. Simulat. 16, 731–740 (2011)MATHCrossRefGoogle Scholar
  29. 29.
    Zhu, J., Zheng, L., Zhang, X.: Homotophy analysis method for hydromagnetic plane and axisymmetric stagnation-point flow with velocity slip. World Academy Sci. Eng. Tech. 63, 151–155 (2010)Google Scholar
  30. 30.
    Zhu, J., Zheng, L., Zhang, X.: The effect of the slip condition on the MHD stagnation-point over a power-law stretching sheet. Appl. Math. Mech. Engl. Ed. 31, 439–448 (2010)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Bachok, N., Ishak, A.: The effects of suction and injection on a moving flat plate in a parallel stream with prescribed surface heat flux. WSEAS Trans. Heat Mass Transf. 5, 73–82 (2010)Google Scholar
  32. 32.
    Bachok, N., Ishak, A., Pop, I.: Mixed convection boundary layer flow over a permeable vertical plate embedded in an anisotropic porous medium. Math. Prob. Eng. 2010, 659023 (2010)CrossRefGoogle Scholar
  33. 33.
    Brinkman, H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571–581 (1952)CrossRefGoogle Scholar
  34. 34.
    Schlichting, H.S., Gersten K.: Boundary-Layer Theory. Springer, New York (2000)MATHGoogle Scholar
  35. 35.
    Martynenko O.G., Khramtsov, P.P.: Free-Convective Heat Transfer. Springer, Berlin (2005)Google Scholar
  36. 36.
    Ishak, A., Nazar, R., Bachok, N., et al.: Melting heat transfer in steady laminar flow over a moving surface. Heat Mass Transf. 46, 463–468 (2010)CrossRefGoogle Scholar
  37. 37.
    Ishak, A., Yacob, N.A., Bachok, N.: Radiation effects on the thermal boundary layer flow over a moving plate with convective boundary condition. Meccanica 46, 795–801 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Mathematics and Institute for Mathematical Research, Faculty of ScienceUniversiti Putra MalaysiaUPM Serdang, SelangorMalaysia
  2. 2.School of Mathematical Sciences, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaUKM Bangi, SelangorMalaysia
  3. 3.Faculty of MathematicsUniversity of ClujClujRomania

Personalised recommendations