Acta Mechanica Sinica

, Volume 26, Issue 6, pp 881–888 | Cite as

A strain-isolation design for stretchable electronics

  • Jian Wu
  • Ming Li
  • Wei-Qiu Chen
  • Dae-Hyeong Kim
  • Yun-Soung Kim
  • Yong-Gang Huang
  • Keh-Chih Hwang
  • Zhan Kang
  • John A. Rogers
Research Paper

Abstract

Stretchable electronics represents a direction of recent development in next-generation semiconductor devices. Such systems have the potential to offer the performance of conventional wafer-based technologies, but they can be stretched like a rubber band, twisted like a rope, bent over a pencil, and folded like a piece of paper. Isolating the active devices from strains associated with such deformations is an important aspect of design. One strategy involves the shielding of the electronics from deformation of the substrate through insertion of a compliant adhesive layer. This paper establishes a simple, analytical model and validates the results by the finite element method. The results show that a relatively thick, compliant adhesive is effective to reduce the strain in the electronics, as is a relatively short film.

Keywords

Strain isolation Thin film Substrate Adhesive Stretchable electronics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rogers J.A., Huang Y.: A curvy, stretchy future for electronics. PNAS 106, 10875–10876 (2009)CrossRefGoogle Scholar
  2. 2.
    Rogers J.A., Someya T., Huang Y.: Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010)CrossRefGoogle Scholar
  3. 3.
    Viventi J., Kim D.H., Moss J.D. et al.: A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Transl. Med. 2, 24ra22 (2010)Google Scholar
  4. 4.
    Kim D.H., Viventi J., Amsden J.J. et al.: Dissolvable films of silk fibroin for ultrathin, conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010)CrossRefGoogle Scholar
  5. 5.
    Wagner S., Lacour S.P., Jones J. et al.: Electronic skin: architecture and components. Physica E 25, 326–334 (2005)CrossRefGoogle Scholar
  6. 6.
    Ko H.C., Stoykovich M.P., Song J. et al.: A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008)CrossRefGoogle Scholar
  7. 7.
    Ko H.C., Shin G., Wang S. et al.: Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small 5, 2703–2709 (2009)CrossRefGoogle Scholar
  8. 8.
    Shin G., Jung I., Malyarchuk V. et al.: Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic eye cameras. Small 6, 851–856 (2010)CrossRefGoogle Scholar
  9. 9.
    Kim D.H., Ahn J.H, Choi W.M. et al.: Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008)CrossRefGoogle Scholar
  10. 10.
    Kim D.H., Choi W.M., Ahn J.H. et al.: Complementary metal oxide silicon integrated circuits incorporating monolithically integrated stretchable wavy interconnects. Appl. Phys. Lett. 93, 044102 (2008)CrossRefGoogle Scholar
  11. 11.
    Kim D.H., Song J., Choi W.M. et al.: Materials and non-coplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. PNAS 105, 18675–18680 (2008)CrossRefGoogle Scholar
  12. 12.
    Kim D.H., Liu Z., Kim Y.S. et al.: Optimized structural designs for stretchable silicon integrated circuits. Small 5, 2841–2847 (2009)CrossRefGoogle Scholar
  13. 13.
    Yoon J., Baca A.J., Park S.I. et al.: Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat. Mater. 7, 907–915 (2008)CrossRefGoogle Scholar
  14. 14.
    Baca A.J., Yu K.J., Xiao J. et al.: Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs. Energy Environ. Sci. 3, 208–211 (2010)CrossRefGoogle Scholar
  15. 15.
    Park S.L., Xiong Y., Kim R.H. et al.: Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325, 977–981 (2009)CrossRefGoogle Scholar
  16. 16.
    Park S.I., Le A.P., Wu J. et al.: Light emission characteristics and mechanics of foldable inorganic light-emitting diodes. Adv. Mater. 22, 3062–3066 (2010)CrossRefGoogle Scholar
  17. 17.
    Huang Y., Zhou W., Hsia K.J. et al.: Stamp collapse in soft lithography. Langmuir 21, 8058–8068 (2005)CrossRefGoogle Scholar
  18. 18.
    Hsia K.J., Huang Y., Menard E. et al.: Collapse of stamps for soft lithography due to interfacial adhesion. Appl. Phys. Lett. 86, 154106 (2005)CrossRefGoogle Scholar
  19. 19.
    Zhou W., Huang Y., Menard E. et al.: Mechanism for stamp collapse in soft lithography. Appl. Phys. Lett. 87, 251925 (2005)CrossRefGoogle Scholar
  20. 20.
    Meitl M.A., Zhu Z.T., Kumar V. et al.: Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5, 33–38 (2006)CrossRefGoogle Scholar
  21. 21.
    Meitl M.A., Feng X., Dong J. et al.: Stress focusing for controlled fracture in microelectromechanical systems. Appl. Phys. Lett. 90, 083110 (2007)CrossRefGoogle Scholar
  22. 22.
    Feng X., Meitl M.A., Bowen A.M. et al.: Competing fracture in kinetically controlled transfer printing. Langmuir 23, 12555–12560 (2007)CrossRefGoogle Scholar
  23. 23.
    Kim T.H., Carlson A., Ahn J.H. et al.: Kinetically controlled, adhesiveless transfer printing using microstructured stamps. Appl. Phys. Lett. 94, 113502 (2009)CrossRefGoogle Scholar
  24. 24.
    Kim, S., Wu, J., Carlson, A., et al.: Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. PNAS. 107, 17095–17100 (2010)Google Scholar
  25. 25.
    Kim D.H., Kim Y.S., Wu J. et al.: Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper. Adv. Mater. 21, 3703–3707 (2009)CrossRefGoogle Scholar
  26. 26.
    Khang D.Y., Jiang H., Huang Y. et al.: A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006)CrossRefGoogle Scholar
  27. 27.
    Sun Y., Choi W.M., Jiang H. et al.: Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1, 201–207 (2006)CrossRefGoogle Scholar
  28. 28.
    Jiang H., Sun Y., Rogers J.A. et al.: Mechanics of precisely controlled thin film buckling on elastomeric substrate. Appl. Phys. Lett. 90, 133119 (2007)CrossRefGoogle Scholar
  29. 29.
    Choi W.M., Song J., Khang D.Y. et al.: Biaxially stretchable “Wavy” silicon nanomembranes. Nano Lett. 7, 1655–1663 (2007)CrossRefGoogle Scholar
  30. 30.
    Song J., Jiang H., Choi W.M. et al.: An analytical study of two-dimensional buckling of thin films on compliant substrates. J. Appl. Phys. 103, 014303 (2008)CrossRefGoogle Scholar
  31. 31.
    Ryu S.Y., Xiao J., Park W. et al.: Lateral buckling mechanics in silicon nanowires on elastomeric substrates. Nano Lett. 9, 3214–3219 (2009)CrossRefGoogle Scholar
  32. 32.
    Xiao J., Ryu S.Y., Huang Y. et al.: Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates. Nanotechnology 21, 085708 (2010)CrossRefGoogle Scholar
  33. 33.
    Song T., Xia J., Lee J.H. et al.: Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 10, 1710–1716 (2010)CrossRefGoogle Scholar
  34. 34.
    Khang D.Y., Xiao J., Kocabas C. et al.: Molecular scale buckling mechanics on individual aligned single-wall carbon nanotubes on elastomeric substrates. Nano Lett. 8, 124–130 (2008)CrossRefGoogle Scholar
  35. 35.
    Xiao J., Jiang H., Khang D.Y. et al.: Mechanics of buckled carbon nanotubes on elastomeric substrates. J. Appl. Phys. 104, 033543 (2008)CrossRefGoogle Scholar
  36. 36.
    Xiao J., Dunham S., Liu P. et al.: Alignment controlled growth of single-walled carbon nanotubes on quartz substrates. Nano Lett. 9, 4311–4319 (2009)CrossRefGoogle Scholar
  37. 37.
    Bowden N., Brittain S., Evans A.G. et al.: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998)CrossRefGoogle Scholar
  38. 38.
    Koh C.T., Liu Z.J., Khang D.Y. et al.: Edge effects in buckled thin films on elastomeric substrates. Appl. Phys. Lett. 91, 133113 (2007)CrossRefGoogle Scholar
  39. 39.
    Jiang H., Khang D.Y., Fei H. et al.: Finite width effect of thin-films buckling on compliant substrate: experimental and theoretical studies. J. Mech. Phys. Solids 56, 2585–2598 (2008)MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Jiang H., Sun Y., Rogers J.A. et al.: Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates. Int. J. Solids Struct. 45, 2014–2023 (2008)MATHCrossRefGoogle Scholar
  41. 41.
    Mei H., Chung J.Y., Yu H.H. et al.: Buckling modes of elastic thin films on elastic substrates. Appl. Phys. Lett. 90, 151902 (2007)CrossRefGoogle Scholar
  42. 42.
    Wang S., Song J., Kim D.H. et al.: Local versus global buckling of thin films on elastomeric substrates. Appl. Phys. Lett. 93, 023126 (2008)CrossRefGoogle Scholar
  43. 43.
    Im S.H., Huang R.: Wrinkle patterns of anisotropic crystal films on viscoelastic substrates. J. Mech. Phys. Solids 56, 3315–3330 (2008)MATHCrossRefGoogle Scholar
  44. 44.
    Pang Y., Huang R.: Effect of elastic anisotropy on surface pattern evolution of epitaxial thin films. Int. J. Solids Struct. 46, 2822–2833 (2009)MATHCrossRefGoogle Scholar
  45. 45.
    Song J.: Herringbone buckling patterns of anisotropic thin films on elastomeric substrates. Appl. Phys. Lett. 96, 051913 (2010)CrossRefGoogle Scholar
  46. 46.
    Xiao J., Carlson A., Liu Z.J. et al.: Stretchable and compressible thin films of stiff materials on compliant wavy substrates. Appl. Phys. Lett. 93, 013109 (2008)CrossRefGoogle Scholar
  47. 47.
    Xiao J., Carlson A., Liu Z. et al.: Analytical and experimental studies of the mechanics of deformation in a solid with a wavy surface profile. J. Appl. Mech. 77, 011003 (2010)CrossRefGoogle Scholar
  48. 48.
    Chen X., Hutchinson J.W.: Herringbone buckling patterns of compressed thin films on compliant substrates. J. Appl. Mech. 71, 597–603 (2004)MATHCrossRefGoogle Scholar
  49. 49.
    Huang Z.Y., Hong W., Suo Z.: Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 53, 2101–2118 (2005)MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Audoly B., Boudaoud A.: Buckling of a stiff film bound to a compliant substrate—Part I: Formation, linear stability of cylindrical patters, secondary bifurcations. J. Mech. Phys. Solids 56, 2401–2421 (2008)MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Audoly B., Boudaoud A.: Buckling of a stiff film bound to a compliant substrate—Part II: A global scenario for the formation of herringbone pattern. J. Mech. Phys. Solids 56, 2422–2443 (2008)MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Audoly B., Boudaoud A.: Buckling of a stiff film bound to a compliant substrate—Part III: Herringbone solutions at large buckling parameter. J. Mech. Phys. Solids 56, 2444–2458 (2008)MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Jiang H., Khang D.Y., Song J. et al.: Finite deformation mechanics in buckled thin films on compliant supports. PNAS 104, 15607–15612 (2007)CrossRefGoogle Scholar
  54. 54.
    Song J., Jiang H., Liu Z. et al.: Buckling of a stiff thin film on a compliant substratein large deformation. Int. J. Solids Struct. 45, 3107–3121 (2008)MATHCrossRefGoogle Scholar
  55. 55.
    Huang R.: Kinetic wrinkling of an elastic film on a viscoelastic substrate. J. Mech. Phys. Solids 53, 63–89 (2005)MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Li T., Suo Z.: Ductility of thin metal films on polymer substrates modulated by interfacial adhesion. Int. J. Solids Struct. 44, 1696–1705 (2007)MATHCrossRefGoogle Scholar
  57. 57.
    Baca A.J., Ahn J.H., Sun Y. et al.: Semiconductor wires and ribbons for high-performance flexible electronics. Angew. Chem. Int. Ed. 47, 5524–5542 (2008)CrossRefGoogle Scholar
  58. 58.
    Song J., Jiang H., Huang Y. et al.: Mechanics of stretchable inorganic electronic materials. J. Vac. Sci. Technol. A 27, 1107–1125 (2009)CrossRefGoogle Scholar
  59. 59.
    Timoshenko S.P., Gere J.M.: Theory of Elastic Stability. McGraw-Hill, New York (1963)Google Scholar
  60. 60.
    Song J., Huang Y., Xiao J. et al.: Mechanics of non-coplanar mesh design for stretchable electronic circuits. J. Appl. Phys. 105, 123516 (2009)CrossRefGoogle Scholar
  61. 61.
    Wang S., Xiao J., Jung I. et al.: Mechanics of hemispherical electronics. Appl. Phys. Lett. 95, 181912 (2009)CrossRefGoogle Scholar
  62. 62.
    Kim D.H., Xiao J., Song J. et al.: Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22, 2108–2124 (2010)CrossRefGoogle Scholar
  63. 63.
    Mcdonald J.C., Whitesides G.M.: Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491–499 (2002)CrossRefGoogle Scholar
  64. 64.
    Maltezos G., Nortrup R., Jeon S. et al.: Tunable organic transistors that use microfluidic source and drain electrodes. Appl. Phys. Lett. 83, 10 (2003)CrossRefGoogle Scholar
  65. 65.
    Kim H.J., Son Ch., Ziaie B.: A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Appl. Phys. Lett. 92, 011904 (2008)CrossRefGoogle Scholar
  66. 66.
    So J.H., Thelen J., Qusba A. et al.: Reversibly deformable and mechanically tunable fluidic antennas. Adv. Funct. Mater. 19, 3632–3637 (2009)CrossRefGoogle Scholar
  67. 67.
    Siegel A.C., Tang S.K.Y., Nijhuis C.A. et al.: Cofabrication: a strategy for building multicomponent microsystems. Acc. Chem. Res. 43, 518–528 (2010)CrossRefGoogle Scholar
  68. 68.
    Jones J., Lacour S.P., Wagner S. et al.: Stretchable wavy metal interconnects. J. Vac. Sci. Technol. A 22, 1723–1725 (2004)CrossRefGoogle Scholar
  69. 69.
    Li T., Suo Z., Lacour S.P. et al.: Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J. Mater. Res. 20, 3274–3277 (2005)CrossRefGoogle Scholar
  70. 70.
    Brosteaux D., Axisa F., Gonzalez M. et al.: Design and fabrication of elastic interconnections for stretchable electronic circuits. IEEE Electron Devices Lett. 28, 552–554 (2007)CrossRefGoogle Scholar
  71. 71.
    Zoumpoulidisa T., Barteka M., de Graafb P. et al.: High-aspect-ratio through-wafer parylene beams for stretchable silicon electronics. Sens. Actuators A 156, 257–264 (2009)CrossRefGoogle Scholar
  72. 72.
    Hsu Y.Y., Gonzalez M., Wolf I.D.: In situ observations on deformation behavior and stretchinginduced failure of fine pitch stretchable interconnect. J. Mater. Res. 24, 3573–3582 (2009)CrossRefGoogle Scholar
  73. 73.
    Kim H.J., Maleki T., Wei P. et al.: A biaxial stretchable interconnect with liquid-alloy-covered joints on elastomeric substrate. J. Microelectromech. Syst. 18, 138–146 (2009)CrossRefGoogle Scholar
  74. 74.
    Lin K.L., Jain K.: Design and fabrication of stretchable multilayer self-aligned interconnects for flexible electronics and large-area sensor arrays using excimer laser photoablation. IEEE Electron Devices Lett. 30, 14–17 (2009)CrossRefGoogle Scholar
  75. 75.
    Ahn J.H., Zhu Z., Park S.I. et al.: Defect tolerance and nanomechanics in transistors that use semiconductor nanomaterials and ultrathin dielectrics. Adv. Funct. Mater. 18, 2535–2540 (2008)CrossRefGoogle Scholar
  76. 76.
    Park S.I., Ahn J.H., Feng X. et al.: Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Adv. Funct. Mater. 18, 2673–2684 (2008)CrossRefGoogle Scholar
  77. 77.
    Jiang Z., Huang Y., Chandra A.: Thermal stresses in layered electronic assemblies. J. Electron. Packag. 119, 127–132 (1997)CrossRefGoogle Scholar
  78. 78.
    Wang K.P., Huang Y.Y., Chandra A. et al.: Interfacial shear stress, peeling stress, and die cracking stress in trilayer electronic assemblies. IEEE TCPT 23, 309–316 (2000)Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH 2010

Authors and Affiliations

  • Jian Wu
    • 1
  • Ming Li
    • 1
    • 2
  • Wei-Qiu Chen
    • 3
  • Dae-Hyeong Kim
    • 4
  • Yun-Soung Kim
    • 4
  • Yong-Gang Huang
    • 1
  • Keh-Chih Hwang
    • 5
  • Zhan Kang
    • 2
  • John A. Rogers
    • 4
    • 6
  1. 1.Departments of Civil and Environmental Engineering, and Mechanical EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Department of Engineering MechanicsDalian University of TechnologyDalianChina
  3. 3.Department of Engineering MechanicsZhejiang UniversityHangzhouChina
  4. 4.Materials Research Laboratory, Department of Materials Science and Engineering, Beckman InstituteUniversity of IllinoisUrbanaUSA
  5. 5.AML, Department of Engineering MechanicsTsinghua UniversityBeijingChina
  6. 6.Departments of Chemistry, Electrical and Computer Engineering, and Mechanical Science and EngineeringUniversity of IllinoisUrbanaUSA

Personalised recommendations