Acta Mechanica Sinica

, Volume 26, Issue 4, pp 541–550 | Cite as

Some exact solutions of the oscillatory motion of a generalized second grade fluid in an annular region of two cylinders

Research Paper


The velocity field and the associated shear stress corresponding to the longitudinal oscillatory flow of a generalized second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. Initially, the fluid and cylinders are at rest and at t = 0+ both cylinders suddenly begin to oscillate along their common axis with simple harmonic motions having angular frequencies Ω1 and Ω2. The solutions that have been obtained are presented under integral and series forms in terms of the generalized G and R functions and satisfy the governing differential equation and all imposed initial and boundary conditions. The respective solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for the similar flow of ordinary second grade fluid and Newtonian fluid are also obtained as limiting cases of our general solutions. At the end, the effect of different parameters on the flow of ordinary second grade and generalized second grade fluid are investigated graphically by plotting velocity profiles.


Generalized second grade fluid Velocity field Shear stress Longitudinal oscillatory flow Laplace and Hankel transforms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Caputo M., Mainardi F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91, 134–147 (1971)CrossRefGoogle Scholar
  2. 2.
    Slonimsky G.L.: On the law of deformation of highly elastic polymeric bodies. Dokl. Akad. Nauk BSSR 140, 343–346 (1961)Google Scholar
  3. 3.
    Stiassnie M.: On the application of fractional calculus for the formulation of viscoelastic models. Appl. Math. Modell. 3, 300–302 (1979)MATHCrossRefGoogle Scholar
  4. 4.
    Mainardi F.: Applications of fractional calculus in mechanics. In: Rusev, P., Dimovschi, I., Kiryakova, V. (eds) Transform Methods and Special Functions, Varna’96, pp. 309–334. Bulgarian Academy of Sciences, Sofia (1998)Google Scholar
  5. 5.
    Bagley R.L., Torvik P.J.: A theoretical basis for the application of fractional calculus to viscoelastisity. J. Rheol. 27, 201–210 (1983)MATHCrossRefGoogle Scholar
  6. 6.
    Bagley R.L., Torvik P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30, 133–155 (1986)MATHCrossRefGoogle Scholar
  7. 7.
    Rogers L.: Operators and fractional derivatives for viscoelastic constitutive equations. J. Rheol. 27, 351–372 (1983)MATHCrossRefGoogle Scholar
  8. 8.
    Koeller R.C.: Applications of fractional calculus to the theory of viscoelasticity. Trans. ASME J. Appl. Mech. 51, 299–307 (1984)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Xu M., Tan W.: Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion. Sci. China Ser. A 44, 1387–1399 (2001)MATHCrossRefGoogle Scholar
  10. 10.
    Xu M., Tan W.: The representation of the constitutive equation of viscoelastic materials by the generalized fractional element networks and its generalized solutions. Sci. China Ser. G 46, 145–157 (2003)CrossRefGoogle Scholar
  11. 11.
    Debnath L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 54, 3413–3442 (2003)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Podlubny I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATHGoogle Scholar
  13. 13.
    Rouse P.E.: The theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21, 1272–1280 (1953)CrossRefGoogle Scholar
  14. 14.
    Ferry J.D., Landel R.F., Williams M.L.: Extensions of the Rouse theory of viscoelastic properties to undiluted linear polymers. J. Appl. Phys. 26, 359–362 (1955)CrossRefGoogle Scholar
  15. 15.
    Stokes G.G.: On the Effect of the Rotation of Cylinders and Spheres About Their Own Axes in Increasing the Logarithmic Decrement of the Arc of Vibration, pp. 204–217. Cambridge University Press, Cambridge (1886)Google Scholar
  16. 16.
    Casarella M.J., Laura P.A.: Drag on oscillating rod with longitudinal and torsional motion. J. Hydronaut. 3, 180–183 (1969)CrossRefGoogle Scholar
  17. 17.
    Rajagopal K.R.: Longitudinal and torsional oscillations of a rod in a non-Newtonian fluid. Acta Mech. 49, 281–285 (1983)MATHCrossRefGoogle Scholar
  18. 18.
    Rajagopal K.R., Bhatnagar R.K.: Exact solutions for some simple flows of an Oldroyd-B fluid. Acta Mech. 113, 233–239 (1995)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Khan, M., Asghar, S., Hayat, T.: Oscillating flow of a Burgers’ fluid in a pipe. The Abdus Salam International Center for Theoretical Physics, IC/2005/071Google Scholar
  20. 20.
    Fetecau C., Fetecau C.: Starting solutions for the motion of a second grade fluid due to longitudinal and torsional oscillations of a circular cylinder. Int. J. Eng. Sci. 44, 788–796 (2006)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Mahmood A., Parveen S., Ara A. et al.: Exact analytic solutions for the unsteady flow of a non-Newtonian fluid between two cylinders with fractional derivative model. Commun. Nonlinear Sci. Numer. Simulat. 14, 3309–3319 (2009)CrossRefGoogle Scholar
  22. 22.
    Vieru D., Akhtar W., Fetecau C. et al.: Starting solutions for the oscillating motion of a Maxwell fluid in cylindrical domains. Meccanica 42, 573–583 (2007)MATHCrossRefGoogle Scholar
  23. 23.
    Fetecau C., Hayat T., Fetecau C.: Starting solutions for oscillating motions of Oldroyd-B fluids in cylindrical domains. J. Non-Newtonian Fluid Mech. 153, 191–201 (2008)CrossRefGoogle Scholar
  24. 24.
    Massoudi M., Phuoc T.X.: On the motion of a second grade fluid due to longitudinal and torsional oscillations of a cylinder: a numerical study. Appl. Math. Comput. 203(4), 471–481 (2008)MATHCrossRefGoogle Scholar
  25. 25.
    Khan M., Ali S.H., Qi H.: Exact solutions of starting flows for a fractional Burgers’ fluid between coaxial cylinders. Nonlinear Anal. Real World Appl. 10(3), 1775–1783 (2009)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Tong D., Wang R., Yang H.: Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe. Sci. China Ser. G 48, 485–495 (2005)CrossRefGoogle Scholar
  27. 27.
    Tan W.C., Xu M.Y.: The impulsive motion of flat plate in a generalized second grade fluid. Mech. Res. Commun. 29, 3–9 (2002)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Shen F., Tan W.C., Zhao Y. et al.: The Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative model. Non-linear Anal. Real World Appl. 7, 1072–1080 (2006)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Fetecau C., Mahmood A., Fetecau C. et al.: Some exact solutions for the helical flow of a generalized Oldroyd-B fluid in a circular cylinder. Comput. Math. Appl. 56, 3096–3108 (2008)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Sneddon I.N.: Functional Analysis in: Encyclopedia of Physics, vol. II. Springer, Berlin (1955)Google Scholar
  31. 31.
    Lorenzo. C.F., Hartley, T.T.: Generalized functions for the fractional calculus. NASA/TP-1999-209424/Rev1 (1999)Google Scholar
  32. 32.
    Debnath L., Bhatta D.: Integral Transforms and Their Applications, 2nd edn. Chapman & Hall/CRC, London (2007)Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH 2010

Authors and Affiliations

  • A. Mahmood
    • 1
  • C. Fetecau
    • 2
  • N. A. Khan
    • 3
  • M. Jamil
    • 1
    • 4
  1. 1.Department of MathematicsCOMSATS Institute of Information TechnologyLahorePakistan
  2. 2.Department of MathematicsTechnical University of IasiIasiRomania
  3. 3.Department of MathematicsUniversity of KarachiKarachiPakistan
  4. 4.Abdus Salam School of Mathematical SciencesGC UniversityLahorePakistan

Personalised recommendations