Advertisement

Acta Mechanica Sinica

, Volume 26, Issue 4, pp 567–572 | Cite as

Frequency related localisation of harmonic elastic waves in stratified welds

  • D. J. Colquitt
  • A. B. Movchan
  • I. S. Jones
  • W. Daniels
Research Paper
  • 88 Downloads

Abstract

The paper presents a computational model for elastic waves in a structured weld adjacent to the free surface of an elastic solid. The main emphasis is on the interaction of waves with the micro-structure of the weld. Effects of localisation and channeling of waves are addressed. A model of a grain structure within the weld is also considered.

Keywords

Macro-structured welds Waves in stratified media Dispersion Localisation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ogilvy J.A.: Ultrasonic beam profiles and beam propagation in an austenitic weld using a theoretical ray tracing model. Ultrasonics 24(6), 337–347 (1986)CrossRefGoogle Scholar
  2. 2.
    Norris A.N.: A theory of pulse-propagation in anisotropic elastic solids. Wave Motion 9(6), 509–532 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Abrahams I.R., Wickham G.R.: The propagation of elastic-waves in a certain class of inhomogeneous anisotropic materials. 1. The refraction of a horizontally polarized shear-wave source. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 436(1898), 449–478 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Abrahams I.D., Wickham G.R.: The refraction of ultrasound in grainy and inhomogeneous fibre reinforced materials. Proc. Inst. Acoust. 13(2), 125–135 (1991)MathSciNetGoogle Scholar
  5. 5.
    Norris A.N., Wickham G.R.: Elastic waves in inhomogeneously oriented anisotropic materials. Wave Motion 33(1), 97–107 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Jones I.S., Movchan A.B.: Bloch–Floquet waves and controlled stop bands in periodic thermo-elastic structures. Waves Random Complex Media 17(4), 429–438 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Poulton C.G., Movchan A.B., McPhedran R.C. et al.: Eigenvalue problems for doubly periodic elastic structures and phononic band gaps. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 456(2002), 2543–2559 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Serco Technical Assurance Services.: Typical austenitic weld information supplied by Serco TAS. May 2009Google Scholar
  9. 9.
    The COMSOL Group, Stockholm, Sweden. COMSOL Multi- physicsGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH 2010

Authors and Affiliations

  • D. J. Colquitt
    • 1
  • A. B. Movchan
    • 1
  • I. S. Jones
    • 2
  • W. Daniels
    • 3
  1. 1.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUK
  2. 2.School of EngineeringJohn Moores UniversityLiverpoolUK
  3. 3.Serco Assurance Walton HouseWarringtonUK

Personalised recommendations