Advertisement

Acta Mechanica Sinica

, Volume 26, Issue 3, pp 391–399 | Cite as

Heat transport mechanisms of low Mach number turbulent channel flow with spanwise wall oscillation

  • Jian Fang
  • Li-Peng Lu
  • Liang Shao
Research Paper

Abstract

Large eddy simulation (LES) of low Mach number compressible turbulent channel flow with spanwise wall oscillation (SWO) is carried out. The flow field is analyzed with emphases laid on the heat transport as well as its relation with momentum transport. When turbulent coherent structures are suppressed by SWO, the turbulent transports are significantly changed, however the momentum and heat transports change in the same manner, which gives the evidence of inherently consistent transport mechanisms between momentum and heat in turbulent boundary layers. The Reynolds analogies of all the flow cases are quite good, which confirms again the fact that the transport mechanisms of momentum and heat are consistent, which gives theoretical support for controlling the wall heat flux control by using the drag reducing techniques.

Keywords

Large eddy simulation Turbulent heat transport Wall heat flux Spanwise wall oscillation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stalio E., Nobile E.: Direct numerical simulation of heat transfer over ribles. Int. J. Heat Fluid Flow 24, 356–371 (2003)CrossRefGoogle Scholar
  2. 2.
    Li F.C., Kawaguchi Y.: Investigation on the characteristics of turbulence transport for momentum and heat in a drag-reducing surfactant solution flow. Phys. Fluids 16(9), 3281–3295 (2004)CrossRefGoogle Scholar
  3. 3.
    Jung W.J., Mangiavacchi N., Akhavan R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4(8), 1605–1607 (1992)CrossRefGoogle Scholar
  4. 4.
    Laadhari F., Skandaji L., Morel R.: Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys. Fluids 6(10), 3218–3220 (1994)CrossRefGoogle Scholar
  5. 5.
    Baron A., Quadrio M.: Turbulent drag reduction by spanwise wall oscillations. Appl. Sci. Res. 55(4), 311–326 (1995)CrossRefGoogle Scholar
  6. 6.
    Orlandi P., Fatica M.: Direct simulations of turbulent flow in a pipe rotating about its axis. J. Fluid Mech. 343, 43–72 (1997)MATHCrossRefGoogle Scholar
  7. 7.
    Dhanak M.R., Si C.: On reduction of turbulent wall friction through spanwise wall oscillations. J. Fluid Mech. 383, 175–195 (1999)MATHCrossRefGoogle Scholar
  8. 8.
    Quadrio M., Sibilla S.: Numerical simulation of turbulent flow in a pipe oscillating around its axis. J. Fluid Mech. 424, 217–241 (2000)MATHCrossRefGoogle Scholar
  9. 9.
    Choi J.I., Xu C.X., Sung H.J.: Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows. AIAA J. 40(5), 842–850 (2002)CrossRefGoogle Scholar
  10. 10.
    Huang, X., Xu, C., Cui, G.X., et al.: The influence of spanwise wall oscillation on the transportation of Reynolds stress. In: Proceedings of 2003’ Fluid Mechanics Youth Workshop, pp. 206–211. Xi’an, Shaanxi, China, 23–25 November, 2003Google Scholar
  11. 11.
    Huang W., Xu C.X., Cui G.X. et al.: Mechanism of drag reduction by spanwise wall oscillation in turbulent channel flow. Acta Mech. Sin. 36(1), 24–30 (2004) (in Chinese)Google Scholar
  12. 12.
    Quadrio M., Ricco P.: Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251–271 (2004)MATHCrossRefGoogle Scholar
  13. 13.
    Zhou, D., Ball, K.S.: The Mechanism of turbulent drag reduction by spanwise wall oscillation. In: Proceedings of 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, pp. 1–14. Sacramento California, USA. 9–12 July, 2006Google Scholar
  14. 14.
    Ricco P., Quadrio M.: Wall-oscillation conditions for drag reduction in turbulent channel flow. Int. J. Heat Fluid Flow 29(4), 891–902 (2008)CrossRefGoogle Scholar
  15. 15.
    Trujillo, S.M., Bogard, D.G., Ball, K.S.: Turbulent boundary layer drag reduction using an oscillating wall. AIAA Paper: AIAA-1997-1870 (1997)Google Scholar
  16. 16.
    Choi K.S., DeBisschop J.R., Clayton B.R.: Turbulent boundary- layer control by means of spanwise-wall oscillation. AIAA J. 36(7), 1157–1163 (1998)CrossRefGoogle Scholar
  17. 17.
    Choi K.S., Graham M.: Drag reduction of turbulent pipe flows by circular-wall oscillation. Phys. Fluid 10(1), 1–9 (1998)CrossRefGoogle Scholar
  18. 18.
    Choi K.S., Clayton B.R.: The mechanism of turbulent drag reduction with wall oscillation. Int. J. Heat Fluid Flow 22, 1–9 (2001)CrossRefGoogle Scholar
  19. 19.
    Cicca G.M.D., Iuso G., Spazzini P.G. et al.: Particle image velocimetry investigation of a turbulent boundary layer manipulated by spanwise wall oscillations. J. Fluid Mech. 467, 41–56 (2002)MATHGoogle Scholar
  20. 20.
    Iuso G., Cicca G.M.D., Onoratob M. et al.: Velocity streak structure modifications induced by flow manipulation. Phys. Fluids 15(9), 2602–2612 (2003)CrossRefGoogle Scholar
  21. 21.
    Ricco P., Quadrio M.: Wall-oscillation conditions for drag reduction in turbulent channel flow. Int. J. Heat Fluid Flow 29(4), 891–902 (2008)CrossRefGoogle Scholar
  22. 22.
    Fang J., Lu L., Shao L.: Large eddy simulation of compressible turbulent channel flow with spanwise wall oscillation. Sci. China Ser. G 52(8), 1233–1243 (2009)CrossRefGoogle Scholar
  23. 23.
    Martin M.P., Piomelli U., Candler G.V.: Subgrid-scale models for compressible large-eddy simulation. Theor. Comput. Fluid Dyn. 13, 361–376 (2000)MATHGoogle Scholar
  24. 24.
    Ducros F., Laporte F., Souléres T. et al.: High-order fluxes for conservative skew-symmetric-like scheme in structured meches: application to compressible flows. J. Comput. Phys. 116, 114–139 (2000)CrossRefGoogle Scholar
  25. 25.
    Kim J., Moin P., Moser R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)MATHCrossRefGoogle Scholar
  26. 26.
    Coleman G.N., Kim J., Moser R.D.: A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 105, 159–183 (1995)CrossRefGoogle Scholar
  27. 27.
    Coleman, G. N.: Direct simulation of isothermal-wall supersonic channel flow. In: Annual Research Briefs, pp. 313–328. Center for Turbulence Research (1993)Google Scholar
  28. 28.
    Ringuette M., Wu M., Martin M.P.: Coherent structures in dns of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 59–69 (2008)MATHCrossRefGoogle Scholar
  29. 29.
    Morkovin, M.V.: Effects of compressibility on turbulent flows. In: Favre, A. (ed.) Mecanique de la Turbulence, pp. 367–380. CNRS, Paris (1962)Google Scholar
  30. 30.
    Bradshaw P.: Compressible turbulent shear layers. Annu. Rev. Fluid Mech. 9, 33–54 (1977)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH 2010

Authors and Affiliations

  1. 1.National Key Laboratory of Science and Technology on Aero-Engines, School of Jet PropulsionBeihang UniversityBeijingChina
  2. 2.Laboratory of Fluid Mechanics and AcousticsEcole Centrale de LyonLyonFrance

Personalised recommendations