Acta Mechanica Sinica

, Volume 25, Issue 1, pp 1–12 | Cite as

Mechanical and electronic approaches to improve the sensitivity of microcantilever sensors

  • Madhu Santosh Ku Mutyala
  • Deepika Bandhanadham
  • Liu Pan
  • Vijaya Rohini Pendyala
  • Hai-Feng JiEmail author
Review Paper


Advances in the field of micro electro mechanical systems and their uses now offer unique opportunities in the design of ultrasensitive analytical tools. The analytical community continues to search for cost-effective, reliable, and even portable analytical techniques that can give reliable and fast response results for a variety of chemicals and biomolecules. Microcantilevers (MCLs) have emerged as a unique platform for label-free chem-sensor or bioassay. Several electronic designs, including piezoresistive, piezoelectric, and capacitive approaches, have been applied to measure the bending or frequency change of the MCLs upon exposure to chemicals. This review summarizes mechanical, fabrication, and electronics approaches to increase the sensitivity of MCL sensors.


Microcantilever Sensor MEMS Sensitivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen G.Y., Warmack R.J., Thundat T., Allison D.P., Huang A.: Resonance response of scanning force microscopy cantilevers. Rev. Sci. Instrum. 65, 2532 (1994)CrossRefGoogle Scholar
  2. 2.
    Gimzewski J.K., Gerber C., Meyer E., Schlittler R.R.: Observation of a chemical reaction using a micromechanical sensor. Chem. Phys. Lett. 217, 589 (1994)CrossRefGoogle Scholar
  3. 3.
    Campbell G.A., Mutharasan R.: Escherichia coli O157:H7 detection limit of millimeter-sized PZT cantilever sensors is 700 Cells/mL. Anal. Sci. 21, 355 (2005)CrossRefGoogle Scholar
  4. 4.
    Stoney G.G.: The tension of metallic films deposited by electrolysis. Proc. R. Soc. (Lond.) 82, 172 (1909)CrossRefGoogle Scholar
  5. 5.
    Yu X., Tang Q., Zhang H., Li T., Wang W.: Design of high-sensitivity cantilever and its monolithic integration with CMOS crcuits. IEEE Sens. J. 7, 489–495 (2007)CrossRefGoogle Scholar
  6. 6.
    Tortonese, M., Yamada, H., Barrett, R.C., Quate, C.F.: Atomic force microscopy using piezoresistive cantilever. Solid State Sens. Actuators 448–451 (1991)Google Scholar
  7. 7.
    Chivukula V., Wang M., Ji H.F., Khaliq A., Fang J., Varahramyan K.: Simulation of SiO2-based piezoresistive MCLs. Sens. Actuators A 125, 526–533 (2006)CrossRefGoogle Scholar
  8. 8.
    Li P., Li X.: A single-sided micromachined piezoresistive SiO2 cantilever sensor for ultra-sensitive detection of gaseous chemicals. J. Micromech. Microeng. 16, 2539–2546 (2006)CrossRefGoogle Scholar
  9. 9.
    Naeli, K., Brand, O.: Cantilever sensor with stress-concentrating piezoresistor design, sensors, 2005 IEEE, pp. 592–595 (2005)Google Scholar
  10. 10.
    Sone H., Ikeuchi A., Izumi T., Okano H., Hosaka S.: Femtogram mass biosensor using self-sensing cantilever for allergy check. Jpn. J. Appl. Phys. 45, 2301–2304 (2006)CrossRefGoogle Scholar
  11. 11.
    Yang S.M., Yin T.L., Chang C.: Development of a double-MCL for surface stress measurement in microsensors. Sens. Actuators B 121, 545–551 (2007)CrossRefGoogle Scholar
  12. 12.
    Verd J., Abadal G., Teva J., Gaudo M.V., Uranga A., Borrise X., Campabadal F., Esteve J., Costa E.F., Perez-Murano F., Davis Z.J., Forsen E., Boisen A., Barniol N.: Design, fabrication, and characterization of a submicroelectromechanical resonator with monolithically integrated CMOS readout circuit. J. Microelectromech. Syst. 14, 508–519 (2005)CrossRefGoogle Scholar
  13. 13.
    Li Y.C., Ho M.H., Hung S.J., Chen M.H., Lu M.S.C.: CMOS micromachined capacitive cantilevers for mass sensing. J. Micromech. Microeng. 16, 2659–2665 (2006)CrossRefGoogle Scholar
  14. 14.
    Lee C.Y., Lee G.-B.: Micromachine based humidity sensors with integrated temperature sensors for signal drift compensation. J. Micromech. Microeng. 13, 620–627 (2003)CrossRefGoogle Scholar
  15. 15.
    Teva J., Abadal G., Torres F., Verd J., Pérez-Murano F., Barniol N.: A femtogram resolution mass sensor platform, based on SOI electrostatically driven resonant cantilever. Part I: Electromechanical model and parameter extraction. Ultramicroscopy 106, 800–807 (2006)CrossRefGoogle Scholar
  16. 16.
    Ghatnekar-Nilsson S., Fors’en E., Abadal G., Verd J., Campabadal F., Pérez-Murano F., Esteve J., Barniol N., Boisen A., Montelius L.: Resonators with integrated CMOS circuitry for mass sensing applications, fabricated by electron beam lithography. Nanotechnology 16, 98–102 (2005)CrossRefGoogle Scholar
  17. 17.
    Davis Z.J., Abadal G., Helbo B., Hansen O., Campabadal F., Pérez-Murano F., Esteve J., Figueras E., Verdb J., Barniol N., Boisen A.: Monolithic integration of mass sensing nano-cantilevers with CMOS circuitry. J. Sens. Actuators A 105, 311–319 (2003)CrossRefGoogle Scholar
  18. 18.
    Yi J.W., Shih W.Y., Shih W.-H.: Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers. J. Appl. Phys. 91, 1680–1686 (2002)CrossRefGoogle Scholar
  19. 19.
    Shimizu M., Okaniwa M., Fujisawa H., Niu H.: Ferroelectric properties of Pb(Zr, Ti)O3 thin films prepared by low-temperature MOCVD using PbTiO3 seeds. J. Eur. Ceram. Soc. 24, 1625–1628 (2004)CrossRefGoogle Scholar
  20. 20.
    Du L., Kwon G., Arai F., Fukuda T., Itoigawa K., Tukahara Y.: Structure design of micro touch sensor array. Sens. Actuators A 107, 7–13 (2003)CrossRefGoogle Scholar
  21. 21.
    Thomas R., Mochizuki S., Mihara T., Ishida T.: Effect of substrate temperature on the crystallization of Pb(Zr, Ti)O3 films on Pt/Ti/Si substrates prepared by radio frequency magnetron sputtering with a stoichiometric oxide target. Mater. Sci. Eng. B 95, 36–42 (2002)CrossRefGoogle Scholar
  22. 22.
    Husmann A., Wesner D.A., Schmidt J., Klotzbucher T., Mergens M., Kreutz E.W.: Pulsed laser deposition of crystalline PZT thin films. Surf. Coat. Technol. 97, 420–425 (1997)CrossRefGoogle Scholar
  23. 23.
    Liu M., Wang J., Wang L., Cui T.: Deposition and characterization of Pb(Zr, Ti)O3 sol-gel thin films for piezoelectric cantilever beams. Smart Mater. Struct. 16, 93–99 (2007)CrossRefGoogle Scholar
  24. 24.
    Wang Z.J., Chu J.R., Maeda R., Kokawa H.: Effect of bottom electrodes on microstructures and electrical properties of sol-gel derived Pb(Zr0.53 Ti0.47)O3 thin films. Thin Solid Films 416, 66–71 (2002)CrossRefGoogle Scholar
  25. 25.
    Lee C., Itoh T., Sasaki G., Suga T.: Sol-gel derived PZT force sensor for scanning force microscopy. Mater. Chem. Phys. 44, 25–29 (1996)CrossRefGoogle Scholar
  26. 26.
    Gong W., Li J., Zhu X., Gui Z., Li L.: Preparation and characterization of sol-gel derived (100)-textured Pb (Zr, Ti) O3 thin films: PbO seeding role in the formation of preferential orientation. Acta Mater. 52, 2787–2793 (2004)CrossRefGoogle Scholar
  27. 27.
    Udayakumar K.R., Schuele P.J., Chen J., Krupanidhi S.B., Cross L.E.: Thickness-dependent electrical characteristics of lead zirconate titanate thin films. J. Appl. Phys. 77, 3981–3986 (1995)CrossRefGoogle Scholar
  28. 28.
    Dong W., Lu X., Liu M., Cui Y., Wang J.: Measurement on the actuating and sensing capability of a PZT MCL. Meas. Sci. Technol. 18, 601–608 (2007)CrossRefGoogle Scholar
  29. 29.
    Xie J., Hub M., Ling S.-Fu, Dua H.: Fabrication and characterization of piezoelectric cantilever for micro transducers. Sens. Actuators A 126, 182–186 (2006)CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Madhu Santosh Ku Mutyala
    • 1
  • Deepika Bandhanadham
    • 1
  • Liu Pan
    • 1
  • Vijaya Rohini Pendyala
    • 1
  • Hai-Feng Ji
    • 1
    • 2
    Email author
  1. 1.Institute for MicromanufacturingLouisiana Tech UniversityRustonUSA
  2. 2.Department of ChemistryDrexel UniversityPhiladelphiaUSA

Personalised recommendations