Advertisement

Acta Mechanica Sinica

, Volume 24, Issue 1, pp 51–59 | Cite as

Slip effects on shearing flows in a porous medium

  • M. KhanEmail author
  • T. Hayat
  • Y. Wang
Research Paper

Abstract

This paper deals with the magnetohydrodynamic (MHD) flow of an Oldroyd 8-constant fluid in a porous medium when no-slip condition is no longer valid. Modified Darcy’s law is used in the flow modelling. The non-linear differential equation with non-linear boundary conditions is solved numerically using finite difference scheme in combination with an iterative technique. Numerical results are obtained for the Couette, Poiseuille and generalized Couette flows. The effects of slip parameters on the velocity profile are discussed.

Keywords

Porous medium Magnetohydrodynamic flow Slip effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rajagopal, K.R., Bhatnager, R.K.: Exact solutions for some simple flows of an Oldroyd-B fluid. Acta Mech. 113, 233–239 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Rajagopal, K.R.: On an exact solution for the flow of an Oldroyd-B fluid. Bull. Tech. Univ. Istanb. 49, 617–623 (1996)zbMATHGoogle Scholar
  3. 3.
    Hayat, T., Siddiqui, A.M., Asghar, S.: Some simple flows of an Oldroyd-B fluid. Int. J. Eng. Sci. 39, 135–147 (2001)CrossRefGoogle Scholar
  4. 4.
    Hayat, T., Hutter, K., Asghar, S., Siddiqui, A.M.: MHD flows of an Oldroyd-B fluid. Math. Comput. Model. 36, 987–995 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Asghar, S., Parveen, S., Hanif, S., Siddiqui, A.M., Hayat, T.: Hall effects on the unsteady hydromagnetic flows of an Oldroyd-B fluid. Int. J. Eng. Sci. 41, 609–619 (2003)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Hayat, T., Khan, M., Ayub, M.: Exact solutions of flow problems of an Oldroyd-B fluid. Appl. Math. Comput. 151, 105–119 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fetecau, C., Fetecau, C.: Decay of a potential vortex in an Oldroyd-B fluid. Int. J. Eng. Sci. 43, 340–351 (2005)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Fetecau, C.: Analytical solutions for non-Newtonian fluid flows in pipe like domains. Int. J. Non-Linear Mech. 39, 225–231 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fetecau, C., Fetecau, C.: Unsteady flows of Oldroyd-B fluids in a channel of rectangular cross-section. Int. J. Non-Linear Mech. 40, 1214–1219 (2005)zbMATHCrossRefGoogle Scholar
  10. 10.
    Chen, C.I., Chen, C.K., Yang, Y.T.: Unsteady unidirectional flow of an Oldroyd-B fluid in a circular duct with different given volume flow rate conditions. Heat Mass Transf. 40, 203–209 (2004)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hayat, T., Nadeem, S., Asghar, S.: Hydromagnetic Couette flow of an Oldroyd-B fluid in a rotating system. Int. J. Eng. Sci. 42, 65–78 (2004)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Wang, Y., Hayat, T., Hutter, K.: MHD flows of an Oldroyd 8-constant fluid in a porous medium. Can. J. Phys. 82, 965–980 (2004)CrossRefGoogle Scholar
  13. 13.
    Hayat, T., Khan, M., Ayub, M.: The effect of the slip condition on flows of an Oldroyd 6-constant fluid. J. Comput. Appl. Math. 202, 402–413 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hayat, T., Khan, M., Asghar, S.: Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid. Acta Mech. 168, 213–232 (2004)zbMATHCrossRefGoogle Scholar
  15. 15.
    Tan, W.C., Masuoka, T.: Stokes’ first problem for an Oldroyd-B fluid in a porous half space. Phys. Fluids 17, 023101–023107 (2005)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Hayat, T., Khan, M., Ayub, M., Siddiqui, A.M.: The unsteady Couette flow of a second grade fluid in a layer of porous medium. Arch. Mech. 57, 405–416 (2005)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Hayat, T., Shahazad, F., Ayub, M.: Stokes’ first problem for the fourth order fluid in a porous half space. Acta Mech. Sin. 23, 17–21 (2007)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Ramamurthy, A.V.: Wall slip in viscous fluids and influence of material of construction. J. Rheol. 30, 337–357 (1986)CrossRefGoogle Scholar
  19. 19.
    Kalika, D.S., Denn, M.M.: Wall slip and extrudate distrortion in linear low-density polyethylene. J. Rheol. 31, 815–834 (1987)CrossRefGoogle Scholar
  20. 20.
    Kraynik, A.M., Schowalter, W.R.: Slip at the wall and extrudate roughness with aqueous solutions of polyvinyl aleohol and sodium borate. J. Rheol. 25, 95–114 (1981)CrossRefGoogle Scholar
  21. 21.
    Lim, F.J., Schowalter, W.R.: Wall slip of narrow molecular weight distribution polybutadienes. J. Rheol. 33, 1359–1385 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Chair of Fluid Dynamics, Department of Mechanical EngineeringDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations