Advertisement

Acta Mechanica Sinica

, Volume 23, Issue 1, pp 55–63 | Cite as

Electromagnetoelastic behaviors of functionally graded piezoelectric solid cylinder and sphere

  • H. L. DaiEmail author
  • Y. M. Fu
  • J. H. Yang
Research Paper

Abstract

Analytical studies on electromagnetoelastic behaviors are presented for the functionally graded piezoelectric material (FGPM) solid cylinder and sphere placed in a uniform magnetic field and subjected to the external pressure and electric loading. When the mechanical, electric and magnetic properties of the material obey an identical power law in the radial direction, the exact displacements, stresses, electric potentials and perturbations of magnetic field vector in the FGPM solid cylinder and sphere are obtained by using the infinitesimal theory of electromagnetoelasticity. Numerical examples also show the significant influence of material inhomogeneity. It is interesting to note that selecting a specific value of inhomogeneity parameter β can optimize the electromagnetoelastic responses, which will be of particular importance in modern engineering designs.

Keywords

Functionally graded piezoelectric material (FGPM) Electromagnetoelastic Solid cylinder Solid sphere Perturbation of magnetic field vector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wu C.C.M., Kahn M. and Moy W. (1996). Piezoelectric ceramics with functional gradients: a new application in material design. J. Am. Ceramics Soc. 79: 809–812 CrossRefGoogle Scholar
  2. 2.
    Chen J., Liu Z. and Zou Z. (2003). Dynamic response of a crack in a functionally graded interface of two dissimilar piezoelectric half-planes. Arc. Appl. Mech. 72: 686–696 zbMATHCrossRefGoogle Scholar
  3. 3.
    Pan E. and Han F. (2005). Exact solution for functionally graded and layered magneto-electro-elastic plates. Int. J. Eng. Sci. 43: 321–339 CrossRefGoogle Scholar
  4. 4.
    Lim C.W. and He L.H. (2001). Exact solution of a compositionally graded piezoelectric layer under uniform stretch, bending and twisting. Int. J. Mech. Sci. 43: 2479–2492 zbMATHCrossRefGoogle Scholar
  5. 5.
    Jin B. and Zhong Z. (2002). A moving mode-III crack in functionally graded piezoelectric material: permeable problem. Mech. Res. Commun. 29: 217–224 zbMATHCrossRefGoogle Scholar
  6. 6.
    Wang B.L. (2003). A mode-III crack in functionally graded piezoelectric materials. Mech. Res. Commun. 30: 151–159 zbMATHCrossRefGoogle Scholar
  7. 7.
    Zhong Z. and Shang E.T. (2003). Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate. Int. J. Solids Struct. 40: 5335–5352 zbMATHCrossRefGoogle Scholar
  8. 8.
    Han X. and Liu G.R. (2003). Elastic waves in a functionally graded piezoelectric cylinder. Smart Materials Struct. 12: 962–971 CrossRefGoogle Scholar
  9. 9.
    Ueda S. (2004). Thermally induced fracture of a functionally graded piezoelectric layer. Journal of Thermal Stresses 27: 291–309 Google Scholar
  10. 10.
    Sun J.L., Zhou Z.G. and Wang B. (2005). A permeable crack in functionally graded piezoelectric/piezomagnetic materials (in Chinese). Acta Mech. Sin. 37(1): 9–14 Google Scholar
  11. 11.
    Ma L., Wu L.Z. and Zhou Z.G (2005). Fracture analysis of a functionally graded piezoelectric strip. Composite Struct. 69: 294–300 CrossRefGoogle Scholar
  12. 12.
    Lee H.J. (2005). Layerwise laminate analysis of functionally graded piezoelectric bimorph beams. J. Intell. Material Syst. Struct. 16: 365–371 CrossRefGoogle Scholar
  13. 13.
    Ootao Y. and Tanigawa Y. (2005). The transient piezothermoelastic problem of a thick functionally graded thermopiezoelectric strip due to nonuniform heat supply. Arch. Appl. Mech. 74: 449–465 zbMATHCrossRefGoogle Scholar
  14. 14.
    Guo L.C., Wu L.Z. and Sun Y.G. (2005). The transient fracture behavior for a functionally graded layered structure subjected to an in-plane impact load. Acta Mech. Sin. 21: 257–266 CrossRefMathSciNetGoogle Scholar
  15. 15.
    Huang X.L. and Shen H.S. (2006). Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments. J. Sound Vibr. 289: 25–53 CrossRefGoogle Scholar
  16. 16.
    Tarn J.Q. (2001). Exact solutions for functionally graded anisotropic cylinders subjected to thermal and mechanical loads. Int. J. Solids Struct. 38: 8189–8206 zbMATHCrossRefGoogle Scholar
  17. 17.
    John K.D. (1984). Electromagnetic. McGraw-Hill, Inc., USA Google Scholar
  18. 18.
    Dai H.L. and Wang X. (2004). Dynamic responses of piezoelectric hollow cylinders in an axial magnetic field. Int. J. Solids Struct. 41: 5231–5246 zbMATHCrossRefGoogle Scholar
  19. 19.
    Heyliger P. (1996). A note on the static behavior of simply-supported laminated piezoelectric cylinders. Int. J. Solids Struct. 34: 3781–3794 CrossRefGoogle Scholar
  20. 20.
    Dunn M.L. and Taya M. (1994). Electroelastic field concentrations in and around inhomogeneities in piezoelectric solids. J. Appl. Mech. 61: 474–475 Google Scholar
  21. 21.
    Dai H.L. and Wang X. (2005). Transient wave propagation in piezoelectric hollow spheres subjected to thermal shock and electric excitation. Struct Eng. Mech. 19(4): 441–457 Google Scholar
  22. 22.
    Sinha D.K. (1962). Note on the radial deformation of a piezoelectric polarized spherical shell with symmetrical temperature distribution. J. Acoust. Soc. Am. 34: 1073–1075 CrossRefGoogle Scholar
  23. 23.
    Dai H.L. and Wang X. (2005). Thermo-electro-elastic transient responses in piezoelectric hollow structures. Int. J. Solids Struct. 42: 1151–1171 zbMATHCrossRefGoogle Scholar
  24. 24.
    William H. (2002). Engineering Electromagnetics. McGraw-Hill, Inc., USA Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Engineering MechanicsHunan UniversityChangshaChina

Personalised recommendations