Advertisement

European Radiology Supplements

, Volume 17, Supplement 6, pp 42–47 | Cite as

Cardiovascular MRI at 3 T

  • Sebastian Kelle
  • Eike NagelEmail author
MRI for the Assessment of Organ Vascularization

Abstract

Cardiovascular magnetic resonance (CMR) imaging at 3 T has started to demonstrate real clinical advantages compared to cardiac imaging at 1.5 T. This article provides an overview of 3 T CMR imaging and its clinical use in the diagnosis of cardiovascular diseases. In addition, an outlook is given on new and improved applications to fully utilize the advantages connected to the higher field strength.

Keywords

3 Tesla Magnetic resonance imaging High-field MRI Cardiovascular disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nayak KS, Cunningham CH, Santos JM, Pauly JM (2004) Real-time cardiac MRI at 3 tesla. Magn Reson Med 51(4):655–660PubMedCrossRefGoogle Scholar
  2. 2.
    Gutberlet M, Noeske R, Schwinge K et al (2006) Comprehensive cardiac magnetic resonance imaging at 3.0 Tesla: feasibility and implications for clinical applications. Invest Radiol 41(2):154–167PubMedCrossRefGoogle Scholar
  3. 3.
    Hinton DP, Wald LL, Pitts J, Schmitt F (2003) Comparison of cardiac MRI on 1.5 and 3.0 Tesla clinical whole body systems. Invest Radiol 38(7):436–442PubMedCrossRefGoogle Scholar
  4. 4.
    Michaely HJ, Nael K, Schoenberg SO et al (2006) Analysis of cardiac function-comparison between 1.5 Tesla and 3.0 Tesla cardiac cine magnetic resonance imaging: preliminary experience. Invest Radiol 41(2):133–140PubMedCrossRefGoogle Scholar
  5. 5.
    Pennell DJ, Sechtem UP, Higgins CB et al (2004) Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. J Cardiovasc Magn Reson 6(4):727–765PubMedCrossRefGoogle Scholar
  6. 6.
    Hendel RC, Patel MR, Kramer CM et al; American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group; American College of Radiology; Society of Cardiovascular Computed Tomography; Society for Cardiovascular Magnetic Resonance; American Society of Nuclear Cardiology; North American Society for Cardiac Imaging; Society for Cardiovascular Angiography and Interventions; Society of Interventional Radiology (2006) ACCF/ACR/SCCT/SCMR/ASNC/NA SCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48(7):1475–1497PubMedCrossRefGoogle Scholar
  7. 7.
    Finn JP, Nael K, Deshpande V et al (2006) Cardiac MR imaging: state of the technology. Radiology 241(2):338–354PubMedCrossRefGoogle Scholar
  8. 8.
    Deshpande VS, Shea SM, Li D (2003) Artifact reduction in true-FISP imaging of the coronary arteries by adjusting imaging frequency. Magn Reson Med 49(5):803–809PubMedCrossRefGoogle Scholar
  9. 9.
    Schar M, Kozerke S, Fischer SE, Boesiger P (2004) Cardiac SSFP imaging at 3 Tesla. Magn Reson Med 51(4):799–806PubMedCrossRefGoogle Scholar
  10. 10.
    Fenchel M, Kramer U, Nael K, Miller S (2007) Cardiac magnetic resonance imaging at 3.0 T. Top Magn Reson Imaging 18(2):95–104PubMedCrossRefGoogle Scholar
  11. 11.
    Wintersperger BJ, Bauner K, Reeder SB et al (2006) Cardiac steady-state free precession CINE magnetic resonance imaging at 3.0 tesla: impact of parallel imaging acceleration on volumetric accuracy and signal parameters. Invest Radiol 41(2):141–147PubMedCrossRefGoogle Scholar
  12. 12.
    Hamdan A, Kelle S, Schnackenburg B et al (2007) Improved quantitative assessment of left ventricular volumes using TGrE approach after application of extracellular contrast agent at 3 Tesla. J Cardiovasc Magn Reson (in press)Google Scholar
  13. 13.
    Pamboucas C, Nihoyannopoulos P (2006) Cardiovascular magnetic resonance at 3 Tesla: advantages, limitations and clinical potential. Hellenic J Cardiol 47(3):170–173PubMedGoogle Scholar
  14. 14.
    McGee KP, Debbins JP, Boskamp EB et al (2004) Cardiac magnetic resonance parallel imaging at 3.0 Tesla: technical feasibility and advantages. J Magn Reson Imaging 19(3):291–297PubMedCrossRefGoogle Scholar
  15. 15.
    Araoz PA, Glockner JF, McGee KP et al (2005) 3 Tesla MR imaging provides improved contrast in first-pass myocardial perfusion imaging over a range of gadolinium doses. J Cardiovasc Magn Reson 7(3):559–564PubMedCrossRefGoogle Scholar
  16. 16.
    Gebker R, Jahnke C, Paetsch I et al (2007) Diagnostic performance of myocardial perfusion MR imaging at 3.0 Tesla in patients with coronary artery disease. Radiology (in press)Google Scholar
  17. 17.
    Su MY, Yang KC, Wu CC et al (2007) First-pass myocardial perfusion cardiovascular magnetic resonance at 3 Tesla. J Cardiovasc Magn Reson 9(4):633–644PubMedCrossRefGoogle Scholar
  18. 18.
    Kelle S, Kokocinski T, Thouet T et al (2005) 1.5 vs. 3.0 Tesla-reduction of contrast agent dosage for scar-imaging possible? (abstract) Eur Heart J e–P2470Google Scholar
  19. 19.
    Klumpp B, Fenchel M, Hoevelborn T et al (2006) Assessment of myocardial viability using delayed enhancement magnetic resonance imaging at 3.0 Tesla. Invest Radiol 41(9):661–667PubMedCrossRefGoogle Scholar
  20. 20.
    Kwong RY, Chan AK, Brown KA et al (2006) Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation 113(23):2733–2743PubMedCrossRefGoogle Scholar
  21. 21.
    Leiner T, de Vries M, Hoogeveen R et al (2003) Contrast-enhanced peripheral MR angiography at 3.0 Tesla: initial experience with a whole-body scanner in healthy volunteers. J Magn Reson Imaging 17(5):609–614PubMedCrossRefGoogle Scholar
  22. 22.
    Lee VS, Hecht EM, Taouli B et al (2007) Body and cardiovascular MR imaging at 3.0 T. Radiology 244(3):692–705PubMedCrossRefGoogle Scholar
  23. 23.
    Rohrer M, Bawer H, Mintorovitch J et al (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strenghts. Invest Radiol 40:715–724PubMedCrossRefGoogle Scholar
  24. 24.
    Stuber M, Botnar RM, Fischer SE et al (2002) Preliminary report on in vivo coronary MRA at 3 Tesla in humans. Magn Reson Med 48(3):425–429PubMedCrossRefGoogle Scholar
  25. 25.
    Huber ME, Kozerke S, Pruessmann KP et al (2004) Sensitivity-encoded coronary MRA at 3T. Magn Reson Med 52(2):221–227PubMedCrossRefGoogle Scholar
  26. 26.
    Bi X, Deshpande V, Simonetti O et al (2005) Three-dimensional breathhold SSFP coronary MRA: a comparison between 1.5T and 3.0T. J Magn Reson Imaging 22(2):206–212PubMedCrossRefGoogle Scholar
  27. 27.
    Etienne A, Botnar RM, Van Muiswinkel AM et al (2002) “Soapbubble” visualization and quantitative analysis of 3D coronary magnetic resonance angiograms. Magn Reson Med 48(4):658–666PubMedCrossRefGoogle Scholar
  28. 28.
    Bi X, Carr JC, Li D (2007) Whole-heart coronary magnetic resonance angiography at 3 Tesla in 5 minutes with slow infusion of Gd-BOPTA, a high-relaxivity clinical contrast agent. Magn Reson Med 58(1):1–7PubMedCrossRefGoogle Scholar
  29. 29.
    Sommer T, Hackenbroch M, Hofer U et al (2005) Coronary MR angiography at 3.0 T versus that at 1.5 T: initial results in patients suspected of having coronary artery disease. Radiology 234(3):718–725PubMedCrossRefGoogle Scholar
  30. 30.
    Yang PC, Nguyen P, Shimakawa A et al (2004) Spiral magnetic resonance coronary angiography-direct comparison of 1.5 Tesla vs. 3 Tesla. J Cardiovasc Magn Reson 6(4):877–884PubMedCrossRefGoogle Scholar
  31. 31.
    Koops A, Ittrich H, Petri S, Priest A et al (2007) Multicontrast-weighted magnetic resonance imaging of atherosclerotic plaques at 3.0 and 1.5 Tesla: ex-vivo comparison with histopathologic correlation. Eur Radiol 17(1):279–286PubMedCrossRefGoogle Scholar
  32. 32.
    Botnar RM, Stuber M, Lamerichs R et al (2003) Initial experiences with in vivo right coronary artery human MR vessel wall imaging at 3 tesla. J Cardiovasc Magn Reson 5(4):589–594PubMedCrossRefGoogle Scholar
  33. 33.
    Hinton DP, Cury RC, Chan RC, et al (2006) Bright and black blood imaging of the carotid bifurcation at 3.0T. Eur J Radiol 57(3):403–411PubMedCrossRefGoogle Scholar
  34. 34.
    Yarnykh VL, Terashima M, Hayes CE et al (2006) Multicontrast black-blood MRI of carotid arteries: comparison between 1.5 and 3 tesla magnetic field strengths. J Magn Reson Imaging 23(5):691–698PubMedCrossRefGoogle Scholar
  35. 35.
    Koktzoglou I, Simonetti O, Li D (2005) Coronary artery wall imaging: initial experience at 3 Tesla. J Magn Reson Imaging 21(2):128–132PubMedCrossRefGoogle Scholar
  36. 36.
    Priest AN, Bansmann PM, Mullerleile K, Adam G (2007) Coronary vessel-wall and lumen imaging using radial k-space acquisition with MRI at 3 Tesla. Eur Radiol 17(2):339–346PubMedCrossRefGoogle Scholar
  37. 37.
    Wacker CM, Hartlep AW, Pfleger S et al (2003) Susceptibility-sensitive magnetic resonance imaging detects human myocardium supplied by a stenotic coronary artery without a contrast agent. J Am Coll Cardiol 41(5):834–840PubMedCrossRefGoogle Scholar
  38. 38.
    Friedrich MG, Niendorf T, Schulz-Menger J et al (2003) Blood oxygen level-dependent magnetic resonance imaging in patients with stress-induced angina. Circulation 108(18):2219–2223PubMedCrossRefGoogle Scholar
  39. 39.
    Jahnke C, Paetsch I, Gebker R et al (2007) Blood Oxygen Level Dependent (BOLD) MR-Bildgebung bei 3.0 Tesla zur Detektion von Belastungsinduzierter Myokardischämie und Infarktnarbe. Clin Res Cardiol V1132 (abstract)Google Scholar
  40. 40.
    Kuijpers D, Ho KY, van Dijkman PR et al (2003) Dobutamine cardiovascular magnetic resonance for the detection of myocardial ischemia with the use of myocardial tagging. Circulation 107(12):1592–1597PubMedCrossRefGoogle Scholar
  41. 41.
    Valeti VU, Chun W, Potter DD et al (2006) Myocardial tagging and strain analysis at 3 Tesla: comparison with 1.5 Tesla imaging. J Magn Reson Imaging 23(4):477–480PubMedCrossRefGoogle Scholar
  42. 42.
    Fenchel M, Nael K, Deshpande VS et al (2006) Renal magnetic resonance angiography at 3.0 Tesla using a 32-element phased-array coil system and parallel imaging in 2 directions. Invest Radiol 41(9):697–703PubMedCrossRefGoogle Scholar
  43. 43.
    Fenchel M, Scheule AM, Stauder NI et al (2006) Atherosclerotic disease: whole-body cardiovascular imaging with MR system with 32 receiver channels and total-body surface coil technology-initial clinical results. Radiology 238(1):280–291PubMedCrossRefGoogle Scholar
  44. 44.
    Niendorf T, Hardy CJ, Giaquinto RO et al (2006) Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med 56(1):167–176PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2007

Authors and Affiliations

  1. 1.Department of Internal Medicine/CardiologyDeutsches Herzzentrum BerlinBerlinGermany
  2. 2.Department of RadiologyJohns Hopkins UniversityBaltimoreUSA
  3. 3.Division of Imaging SciencesKing’s College London, The Rayne InstitutLondonUK
  4. 4.Techniques for Biomedical ImagingTechnical University BerlinBerlinGermany

Personalised recommendations