Advertisement

Lunge, (Sommer), Ausdauersport – Extreme in der Leichtathletik

  • S. SorichterEmail author
Leitthema
  • 23 Downloads

Zusammenfassung

Im Sommer 2018 wurden mit 2:01:39 h im Marathon der Männer sowie mit 7:52:39 h beim Ironman (Triathlon) auf Hawaii spektakuläre (Welt‑)Rekorde aufgestellt. Diese erfordern außergewöhnliche aerobe Ausdauerfähigkeit, die nur durch gezieltes Training mit erhöhtem Ventilationsbedarf erreicht werden kann. Für ein effektives Training im Hochleistungssport ist eine regelmäßige Leistungsdiagnostik (Laktatdiagnostik, ggf. Spiroergometrie) mit sportwissenschaftlicher Betreuung unerlässlich. Kehrseite der Ausdauersportarten mit hohem Ventilationsbedarf ist ein mehrfach erhöhtes Risiko zur Entwicklung einer anstrengungsinduzierten obstruktiven Ventilationsstörung, oft im Sinne einer „exercise-induced bronchoconstriction“ (EIB; exspiratorische obstruktive Ventilationsstörung nach definierter Belastung), aber auch als „exercise-induced asthma“ (EIA; Atemnot, Husten, Giemen mit thorakaler Enge). Dieser Überempfindlichkeit der Atemwege liegt eine chronische Entzündungsreaktion zugrunde, bei früher Manifestation oft mit eosinophil-allergischem („early onset phenotype“), bei später Manifestation (Hochleistungssport) meist mit neutrophil-eosinophil irritativem („late onset phenotype“) Muster. Eine fundierte Anamnese mit Lungenfunktion und gezielter Provokation (Belastungstest/bronchiale Provokation) sind für die Differenzialdiagnose belastungsinduzierter Atemwegsobstruktionen essenziell. Differenzialdiagnosen sind laryngeale Dysfunktion („exercise-induced laryngeal obstruction“, EILO) bei inspiratorischem Stridor, verminderte Fitness sowie Übertraining, v. a. bei fehlendem Ansprechen der Inhalationstherapie. Frühzeitiger Einsatz inhalativer Steroide ist Therapie der ersten Wahl sowie bedarfsweise Anwendung inhalativer β2-Mimetika unter Berücksichtigung der Antidopingregeln bei Wettkampfathleten.

Schlüsselwörter

Körperliche Ausdauer Belastungsinduziertes Asthma Bronchokonstriktion Luftwegobstruktion Sportliche Leistung 

Lungs, (summer), endurance training—extremes in athletics

Abstract

In the summer of 2018, spectacular world records were set in the men’s marathon with 2:01:39 h and in the men’s ironman in Hawaii with 7:52:39 h. Such performances require extraordinary endurance capabilities that can only be achieved through target-oriented training with increased ventilatory demand. For effective training in elite sports, regular performance diagnostics (blood lactate concentration, spiroergometry) and support from sports scientists are essential. The downside of endurance sports with a high ventilatory demand is the several-times increased risk of developing an exercise-induced obstructive ventilatory disorder, frequently exercise-induced bronchoconstriction (EIB; expiratory obstructive reaction following a standardized exercise test) but also exercise-induced asthma (EIA; breathlessness, cough, wheezing, and chest tightness). This oversensitivity of the airways is the result of a chronic inflammatory reaction. Athletes with early symptom manifestation usually show an eosinophilic allergic pattern (early-onset phenotype), those with late manifestation (elite sports) a mixed granulocytic irritative pattern (neutrophilic/eosinophilic; late-onset phenotype). Diagnosis of EIA/EIB is based on a typical anamnesis in combination with lung function and targeted provocation testing (i. e., exercise or direct stimuli such as methacholine). Differential diagnoses are exercise-induced laryngeal obstruction (EILO) as well as poor physical fitness or overtraining, particularly in the absence of a response to inhalation therapy. Early use of inhaled corticosteroids is first-choice therapy, with as-required inhaled β2-agonists for immediate inhibition of bronchoconstriction under consideration of anti-doping regulations in competitive athletes.

Keywords

Physical endurance Exercise-induced asthma Bronchoconstriction Airway obstruction Athletic performance 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

S. Sorichter gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Anderson SD (2004) Single-dose agents in the prevention of exercise-induced asthma: a descriptive review. TreatRespirMed 3:365–379Google Scholar
  2. 2.
    Anderson SD (2006) How does exercise cause asthma attacks? Curropinallergy Clinimmunol 6:37–42Google Scholar
  3. 3.
    Anderson SD, Charlton B, Weiler JM et al (2009) Comparison of mannitol and methacholine to predict exercise-induced bronchoconstriction and a clinical diagnosis of asthma. RespirRes 10:4Google Scholar
  4. 4.
    Burns J, Mason C, Mueller N et al (2015) Asthma prevalence in Olympic summer athletes and the general population: An analysis of three European countries. Respir Med 109:813–820.  https://doi.org/10.1016/j.rmed.2015.05.002 CrossRefPubMedGoogle Scholar
  5. 5.
    Carlsen KH (2011) The breathless adolescent asthmatic athlete. EurRespirJ, Bd. 38, S 713–720Google Scholar
  6. 6.
    Carlsen KH, Anderson SD, Bjermer L et al (2008) Exercise-induced asthma, respiratory and allergic disorders in elite athletes: epidemiology, mechanisms and diagnosis: part I of the report from the Joint Task Force of the European Respiratory Society (ERS) and the European Academy of Allergy and Clinical Immunology (EAACI) in cooperation with GA2LEN. Allergy 63:387–403CrossRefGoogle Scholar
  7. 7.
    Christensen PM, Thomsen SF, Rasmussen N, Backer V (2011) Exercise-induced laryngeal obstructions: prevalence and symptoms in the general public. EurArchOtorhinolaryngol, Bd. 268, S 1313–1319Google Scholar
  8. 8.
    Coates AL, Wanger J, Cockcroft DW et al (2017) ERS technical standard on bronchial challenge testing: general considerations and performance of methacholine challenge tests. Eur Respir J 49:1601526.  https://doi.org/10.1183/13993003.01526-2016 CrossRefPubMedGoogle Scholar
  9. 9.
    Del Giacco SR, Firinu D, Bjermer L, Carlsen K‑H (2015) Exercise and asthma: an overview. Eur Clin Respir J 2:27984.  https://doi.org/10.3402/ecrj.v2.27984 CrossRefPubMedGoogle Scholar
  10. 10.
    Duong M, Subbarao P, Adelroth E et al (2008) Sputum eosinophils and the response of exercise-induced bronchoconstriction to corticosteroid in asthma. Chest 133:404–411CrossRefGoogle Scholar
  11. 11.
    Elers J, Pedersen L, Backer V (2011) Asthma in elite athletes. ExpertRevRespirMed, Bd. 5, S 343–351Google Scholar
  12. 12.
    Fitch KD, Sue-Chu M, Anderson SD et al (2008) Asthma and the elite athlete:. J Allergy Clin Immunol 122:254–260CrossRefGoogle Scholar
  13. 13.
    Griffin SA, Walsted ES, Hull JH (2018) Breathless athlete: exercise-induced laryngeal obstruction. Br J Sports Med 52:1211–1212.  https://doi.org/10.1136/bjsports-2018-099159 CrossRefPubMedGoogle Scholar
  14. 14.
    Haahtela T, Malmberg P, Moreira A (2008) Mechanisms of asthma in Olympic athletes—practical implications. Arerugi 63:685–694Google Scholar
  15. 15.
    Hallstrand TS, Leuppi JD, Joos G et al (2018) ERS technical standard on bronchial challenge testing: pathophysiology and methodology of indirect airway challenge testing. Eur Respir J 52:1801033.  https://doi.org/10.1183/13993003.01033-2018 CrossRefPubMedGoogle Scholar
  16. 16.
    Halvorsen T, Walsted ES, Bucca C et al (2017) Inducible laryngeal obstruction: an official joint European Respiratory Society and European Laryngological Society statement. Eur Respir J 50:1602221.  https://doi.org/10.1183/13993003.02221-2016 CrossRefPubMedGoogle Scholar
  17. 17.
    Helenius I, Lumme A, Haahtela T (2005) Asthma, airway inflammation and treatment in elite athletes. Sports Med 35:565–574CrossRefGoogle Scholar
  18. 18.
    Holzer K, Anderson SD, Douglass J (2002) Exercise in elite summer athletes: Challenges for diagnosis. Jallergy Clinimmunol 110:374–380CrossRefGoogle Scholar
  19. 19.
    Kenn K, Balkissoon R (2010) Vocal cord dysfunction: what do we know? Eur Respir J 37:194–200.  https://doi.org/10.1183/09031936.00192809 CrossRefGoogle Scholar
  20. 20.
    McFadden ER, Nelson JA, Skowronski ME, Lenner KA (1999) Thermally induced asthma and airway drying. Amjrespircrit Care Med 160:221–226CrossRefGoogle Scholar
  21. 21.
    McKenzie DC, McLuckie SL, Stirling DR (1994) The protective effects of continuous and interval exercise in athletes with exercise-induced asthma. MedSciSports. Exerc 26:951–956Google Scholar
  22. 22.
    Meyer FJ, Borst MM, Buschmann H‑C et al (2018) Exercise Testing in Respiratory Medicine—DGP Recommendations. Pneumol Stuttg Ger 72:687–731.  https://doi.org/10.1055/a-0637-8593 CrossRefGoogle Scholar
  23. 23.
    Mickleborough TD, Lindley MR, Turner LA (2007) Comparative effects of a high-intensity interval warm-up and salbutamol on the bronchoconstrictor response to exercise in asthmatic athletes. Intjsports Med 28:456–462Google Scholar
  24. 24.
    Milgrom H (2004) Exercise-induced asthma: ways to wise exercise. CurrOpinAllergy. ClinImmunol, Bd. 4, S 147–153Google Scholar
  25. 25.
    Pedersen L, Elers J, Backer V (2011) Asthma in elite athletes: pathogenesis, diagnosis, differential diagnoses, and treatment. PhysSportsmed, Bd. 39, S 163–171Google Scholar
  26. 26.
    Roecker K, Prettin S, Pottgiesser T et al (2010) Metabolische Leistungsdiagnostik und Trainingssteuerung in der Sportmedizin. Sport. Präventivmedizin, Bd. 40, S 6–12  https://doi.org/10.1007/s12534-010-0079-x CrossRefGoogle Scholar
  27. 27.
    Roecker K, Prettin S, Sorichter S (2005) Gas exchange measurements with high temporal resolution: The breath-by-breath approach. Int J Sports Med 26:11–S18.  https://doi.org/10.1055/s-2004-830506 CrossRefGoogle Scholar
  28. 28.
    Rundell KW, Spiering BA (2003) Inspiratory stridor in elite athletes. Chest 123:468–474CrossRefGoogle Scholar
  29. 29.
    Rundell KW, Spiering BA, Baumann JM, Evans TM (2005) Effects of montelukast on airway narrowing from eucapnic voluntary hyperventilation and cold air exercise. Brjsports Med 39:232–236Google Scholar
  30. 30.
    Selge C, Thomas S, Nowak D et al (2016) Asthma prevalence in German Olympic athletes: A comparison of winter and summer sport disciplines. Respir Med 118:15–21.  https://doi.org/10.1016/j.rmed.2016.07.008 CrossRefPubMedGoogle Scholar
  31. 31.
    Sorichter S (2012) Exercise-Induced Bronchoconstriction—a Short Review with Practical Recommendations. Dtsch Z Sportmed 63:294–297.  https://doi.org/10.5960/dzsm.2012.034 CrossRefGoogle Scholar
  32. 32.
    Sorichter S (2013) Athleten, Asthma und Anstrengung. Pneumol 10:400–408.  https://doi.org/10.1007/s10405-013-0709-0 CrossRefGoogle Scholar
  33. 33.
    unkown (2019) The World Anti-Doping Code THE 2019 PROHIBITED LIST INTERNATIONAL STANDARD. WadaGoogle Scholar
  34. 34.
    Vautier JF, Vandewalle H, Arabi H, Monod H (1995) Critical power as an endurance index. Appl Ergon 26:117–121CrossRefGoogle Scholar
  35. 35.
    Weiler JM, Anderson SD, Randolph C et al (2010) Pathogenesis, prevalence, diagnosis, and management of exercise-induced bronchoconstriction: a practice parameter. Ann Asthma. Immunol 105:1–47Google Scholar
  36. 36.
    (2018) Ausdauer. WikipediaGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Innere Medizin – Klinik für Pneumologie und BeatmungsmedizinSt.-Josefskrankenhaus FreiburgFreiburgDeutschland

Personalised recommendations