Advertisement

Personalisierte Medizin bei pulmonaler Hypertonie

  • K. Milger-KneidingerEmail author
Leitthema
  • 27 Downloads

Zusammenfassung

Die pulmonale Hypertonie ist eine heterogene Gruppe von Erkrankungen, welche über den erhöhten mittleren pulmonal-arteriellen Druck definiert ist. Die personalisierte Medizin zielt darauf ab, die Therapie individuell auf den Patienten und seine Krankheitscharakteristika abzustimmen und so die Therapieansprache und das Ergebnis zu verbessern. Im vorliegenden Artikel werden aktuelle und zukünftige Ansätze zur Implementierung der personalisierten Medizin bei der pulmonalen Hypertonie dargestellt. Durch die Anwendung der ätiologischen Klassifikation, die Vasoreagibilitätstestung, die Risikostratifizierung, die genetische Testung, aber auch die Berücksichtigung klinischer Charakteristika wie Alter und Geschlecht wird eine Personalisierung der Therapie bereits heute angewendet. In Zukunft könnten auch pharmakogenetische Untersuchungen helfen, das Ansprechen auf bestehende und neue medikamentöse Therapien vorherzusagen. Mit Hilfe der „Omics“-Technologien werden heute neue Erkenntnisse nicht nur im Bereich des Genoms und Transkriptoms sondern auch des Epigenoms, Metaboloms und Proteoms gewonnen. Diese könnten künftig eine weitere Unterteilung der Patientengruppen und die Entwicklung neuer personalisierter Therapien erlauben.

Schlüsselwörter

Individualisierte Medizin Präzisionsmedizin Pharmakogenetik Phänotyp Genetische Testung 

Personalized medicine in pulmonary hypertension

Abstract

Pulmonary hypertension is a heterogeneous group of diseases that is characterized by an increased mean pulmonary arterial pressure. Personalized medicine aims to individualize the treatment to the characteristics of the patient and the disease in order to improve the response to treatment and the outcome. This article describes the current and future approaches for implementation of personalized medicine for pulmonary hypertension. By use of the etiological classification, vasoreactivity testing, risk stratification, genetic testing and also consideration of clinical characteristics, such as age and sex, a personalization of treatment is already being applied. In the future pharmacogenetic investigations could help to predict the response to existing and new medical treatments. Using omics technologies new insights are gained not only in the area of the genome and transcriptome but also the epigenome, metabolome and proteome. These insights could be used for further subclassification of patient groups and development of new personalized treatments.

Keywords

Individualized medicine  Precision medicine Pharmacogenetics Phenotype Genetic testing 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

K. Milger-Kneidinger gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Galiè N, Humbert M, Vachiery J‑L, Gibbs S, Lang I, Torbicki A et al (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 37(1):67–119CrossRefGoogle Scholar
  2. 2.
    Condliffe R, Kiely DG, Peacock AJ, Corris PA, Gibbs JSR, Vrapi F et al (2009) Connective tissue disease–associated pulmonary arterial hypertension in the modern treatment era. Am J Respir Crit Care Med 179(2):151–157CrossRefGoogle Scholar
  3. 3.
    Gall H, Felix JE, Schneck FK, Milger K, Sommer N, Voswinckel R et al (2017) The Giessen pulmonary hypertension registry: survival in pulmonary hypertension subgroups. J Heart Lung Transplant 36(9):957.  https://doi.org/10.1016/j.healun.2017.02.016 CrossRefPubMedGoogle Scholar
  4. 4.
    Sitbon O, Humbert M, Jagot JL, Taravella O, Fartoukh M, Parent F et al (1998) Inhaled nitric oxide as a screening agent for safely identifying responders to oral calcium-channel blockers in primary pulmonary hypertension. Eur Respir J 12(2):265–270CrossRefGoogle Scholar
  5. 5.
    Sitbon O, Humbert M, Jais X, Ioos V, Hamid AM, Provencher S et al (2005) Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 111(23):3105–3111CrossRefGoogle Scholar
  6. 6.
    Milger K, Felix JF, Voswinckel R, Sommer N, Franco OH, Grimminger F et al (2015) Sildenafil versus nitric oxide for acute vasodilator testing in pulmonary arterial hypertension. Pulm Circ 5(2):305–312CrossRefGoogle Scholar
  7. 7.
    Boucly A, Weatherald J, Savale L, Jaïs X, Cottin V, Prevot G et al (2017) Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension. Eur Respir J. 50(2) pii: 1700889.  https://doi.org/10.1183/13993003.00889-2017.CrossRefPubMedGoogle Scholar
  8. 8.
    Hamid R, Cogan JD, Hedges LK, Austin E, Phillips JA, Newman JH et al (2009) Penetrance of pulmonary arterial hypertension is modulated by the expression of normal BMPR2 allele. Hum Mutat 30(4):649–654CrossRefGoogle Scholar
  9. 9.
    Phillips JA, Poling JS, Phillips CA, Stanton KC, Austin ED, Cogan JD et al (2008) Synergistic heterozygosity for TGFβ1 SNPs and BMPR2 mutations modulates the age at diagnosis and penetrance of familial pulmonary arterial hypertension. Genet Med 10(5):359–365CrossRefGoogle Scholar
  10. 10.
    Austin ED, Cogan JD, West JD, Hedges LK, Hamid R, Dawson EP et al (2009) Alterations in oestrogen metabolism: implications for higher penetrance of familial pulmonary arterial hypertension in females. Eur Respir J 34(5):1093–1099CrossRefGoogle Scholar
  11. 11.
    Evans JDW, Girerd B, Montani D, Wang X‑J, Galiè N, Austin ED et al (2016) BMPR2 mutations and survival in pulmonary arterial hypertension: an individual participant data meta-analysis. Lancet Respir Med 4(2):129–137CrossRefGoogle Scholar
  12. 12.
    Rosenzweig EB, Morse JH, Knowles JA, Chada KK, Khan AM, Roberts KE et al (2008) Clinical implications of determining BMPR2 mutation status in a large cohort of children and adults with pulmonary arterial hypertension. J Heart Lung Transplant 27(6):668–674CrossRefGoogle Scholar
  13. 13.
    Eyries M, Montani D, Girerd B, Perret C, Leroy A, Lonjou C et al (2014) EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension. Nat Genet 46(1):65–69CrossRefGoogle Scholar
  14. 14.
    Galiè N, Barberà JA, Frost AE, Ghofrani H‑A, Hoeper MM, McLaughlin VV et al (2015) Initial use of ambrisentan plus tadalafil in pulmonary arterial hypertension. N Engl J Med 373(9):834–844CrossRefGoogle Scholar
  15. 15.
    Lajoie AC, Lauzière G, Lega J‑C, Lacasse Y, Martin S, Simard S et al (2016) Combination therapy versus monotherapy for pulmonary arterial hypertension: a meta-analysis. Lancet Respir Med 4(4):291–305CrossRefGoogle Scholar
  16. 16.
    Heresi GA, Love TE, Tonelli AR, Highland KB, Dweik RA (2018) Choice of initial oral therapy for pulmonary arterial hypertension, age and long term survival. Am J Respir Crit Care Med.  https://doi.org/10.1164/rccm.201801-0059le CrossRefPubMedGoogle Scholar
  17. 17.
    Ventetuolo CE, Praestgaard A, Palevsky HI, Klinger JR, Halpern SD, Kawut SM (2014) Sex and haemodynamics in pulmonary arterial hypertension. Eur Respir J 43(2):523–530CrossRefGoogle Scholar
  18. 18.
    Ventetuolo CE, Mitra N, Wan F, Manichaikul A, Barr RG, Johnson C et al (2016) Oestradiol metabolism and androgen receptor genotypes are associated with right ventricular function. Eur Respir J 47(2):553–563CrossRefGoogle Scholar
  19. 19.
    Gabler NB, French B, Strom BL, Liu Z, Palevsky HI, Taichman DB et al (2012) Race and sex differences in response to endothelin receptor antagonists for pulmonary arterial hypertension. Chest 141(1):20–26CrossRefGoogle Scholar
  20. 20.
    Mathai SC, Hassoun PM, Puhan MA, Zhou Y, Wise RA (2015) Sex differences in response to tadalafil in pulmonary arterial hypertension. Chest 147(1):188–197CrossRefGoogle Scholar
  21. 21.
    Benza RL, Gomberg-Maitland M, Demarco T, Frost AE, Torbicki A, Langleben D et al (2015) Endothelin-1 pathway polymorphisms and outcomes in pulmonary arterial hypertension. Am J Respir Crit Care Med 192(11):1345–1354CrossRefGoogle Scholar
  22. 22.
    Hemnes AR, Zhao M, West J, Newman JH, Rich S, Archer SL et al (2016) Critical genomic networks and vasoreactive variants in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 194(4):464–475CrossRefGoogle Scholar
  23. 23.
    Hemnes AR, Trammell AW, Archer SL, Rich S, Yu C, Nian H et al (2015) Peripheral blood signature of vasodilator-responsive pulmonary arterial hypertension. Circulation 131(4):401–409CrossRefGoogle Scholar
  24. 24.
    Savale L, Guignabert C, Weatherald J, Humbert M (2018) Precision medicine and personalising therapy in pulmonary hypertension: seeing the light from the dawn of a new era. Eur Respir Rev 27(148):180004CrossRefGoogle Scholar
  25. 25.
    Nakhleh MK, Haick H, Humbert M, Cohen-Kaminsky S (2017) Volatolomics of breath as an emerging frontier in pulmonary arterial hypertension. Eur Respir J 49(2):1601897CrossRefGoogle Scholar
  26. 26.
    Pollett JB, Benza RL, Murali S, Shields KJ, Passineau MJ (2013) Harvest of pulmonary artery endothelial cells from patients undergoing right heart catheterization. J Heart Lung Transplant 32(7):746–749CrossRefGoogle Scholar
  27. 27.
    Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA, Loyd JE et al (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension. Nat Genet 26(1):81–84CrossRefGoogle Scholar
  28. 28.
    Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G et al (2000) Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor–II gene. Am J Hum Genet 67(3):737–744CrossRefGoogle Scholar
  29. 29.
    Spiekerkoetter E, Tian X, Cai J, Hopper RK, Sudheendra D, Li CG (2013) FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J Clin Invest 123(8):3600–3613CrossRefGoogle Scholar
  30. 30.
    Spiekerkoetter E, Sung YK, Sudheendra D, Scott V, Del Rosario P, Bill M et al (2017) Randomised placebo-controlled safety and tolerability trial of FK506 (tacrolimus) for pulmonary arterial hypertension. Eur Respir J 50(3):1602449CrossRefGoogle Scholar
  31. 31.
    Newman JH, Rich S, Abman SH, Alexander JH, Barnard J, Beck GJ et al (2017) Enhancing insights into pulmonary vascular disease through a precision medicine approach. A joint NHLBI-cardiovascular medical research and education fund workshop report. Am J Respir Crit Care Med 195(12):1661–1670CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Medizinische Klinik und Poliklinik VLMU – Klinikum der Universität München, Comprehensive Pneumology Center Munich (CPC-M)MünchenDeutschland

Personalised recommendations