Der Pneumologe

, 8:359 | Cite as

COPD

  • A.-R. Koczulla
  • T. Greulich
  • S. Schmid
  • K. Kenn
  • I. Heinzelmann
  • C. Vogelmeier
CME Weiterbildung · Zertifizierte Fortbildung

Zusammenfassung

Die chronisch obstruktive Lungenerkrankung (COPD) ist gekennzeichnet durch eine nicht voll reversible und in der Regel voranschreitende Atemwegsobstruktion. Ursächlich ist eine Inflammationsreaktion der Lunge auf inhalative Noxen, wobei das Zigarettenrauchen in Mitteleuropa die Hauptursache darstellt. In zahlreichen Studien konnten signifikante Zusammenhänge zwischen einer reduzierten FEV1 und extrapulmonalen Erkrankungen gefunden werden. Die Verbindung zwischen der COPD und den extrapulmonalen Manifestationen der Erkrankung scheint eine systemische Inflammationsreaktion zu sein, wobei die genauen pathogenetischen Mechanismen noch nicht bekannt sind. Auch diagnostische Scores wie der gut validierte BODE-Score, die nicht nur anhand der Lungenfunktion den Schweregrad der COPD festlegen, reflektieren das systemische Krankheitsverständnis. Das holistische COPD-Verständnis spiegelt sich auch in neuen systemischen therapeutischen Ansätzen wider.

Schlüsselwörter

COPD Therapie Training Muskel Inflammation 

COPD

Abstract

Chronic obstructive lung disease (COPD) is characterized by airflow limitation that is not fully reversible and usually progressive. The disease is associated with an inflammatory response of the lungs to noxious particles, mainly cigarette smoke. Numerous studies suggest a significant association between impaired lung function and the presence of extrapulmonary comorbidities. Systemic inflammation is believed to be a link between COPD and its extrapulmonary manifestations although the exact mechanisms remain unclear. The development and validation of score systems that classify COPD severity not only by lung function represent a new understanding of the disease. This warrants novel therapeutic approaches.

Keywords

COPD Therapy Training Muscles Inflammation 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Vogelmeier C, Koczulla R, Fehrenbach H, Bals R (2006) Pathogenesis of chronic obstructive pulmonary disease. Internist (Berl) 47:885–890, 892Google Scholar
  2. 2.
    Vogelmeier C, Buhl R, Criee CP et al (2007) Guidelines for the diagnosis and therapy of COPD issued by Deutsche Atemwegsliga and Deutsche Gesellschaft fur Pneumologie und Beatmungsmedizin. Pneumologie 61:e1–e40PubMedCrossRefGoogle Scholar
  3. 3.
    Rabe KF (2006) Guidelines for chronic obstructive pulmonary disease treatment and issues of implementation. Proc Am Thorac Soc 3:641–644PubMedCrossRefGoogle Scholar
  4. 4.
    Rabe KF, Hurd S, Anzueto A et al (2007) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 176:532–555PubMedCrossRefGoogle Scholar
  5. 5.
    Jones PW, Harding G, Berry P et al (2009) Development and first validation of the COPD Assessment Test. Eur Respir J 34:648–654PubMedCrossRefGoogle Scholar
  6. 6.
    Jones PW, Brusselle G, Dal Negro RW et al (2011) Properties of the COPD Assessment Test (CAT) in a cross-sectional European study. Eur Respir J 38:29–35PubMedCrossRefGoogle Scholar
  7. 7.
    McDonald CF (2010) ACP Journal Club. An updated BODE index and a simplified ADO index predicted 3-year mortality in COPD better than the original BODE index. Ann Intern Med 152:JC1–J12PubMedGoogle Scholar
  8. 8.
    Puhan MA, Garcia-Aymerich J, Frey M et al (2009) Expansion of the prognostic assessment of patients with chronic obstructive pulmonary disease: the updated BODE index and the ADO index. Lancet 374:704–711PubMedCrossRefGoogle Scholar
  9. 9.
    Marin JM, Cote CG, Diaz O et al (2011) Prognostic assessment in COPD: health related quality of life and the BODE index. Respir Med 105:916–921PubMedCrossRefGoogle Scholar
  10. 10.
    Sarir H, Mortaz E, Karimi K et al (2009) Cigarette smoke regulates the expression of TLR4 and IL-8 production by human macrophages. J Inflamm (Lond) 6:12Google Scholar
  11. 11.
    Sarir H, Mortaz E, Janse WT et al (2010) IL-8 production by macrophages is synergistically enhanced when cigarette smoke is combined with TNF-alpha. Biochem Pharmacol 79:698–705PubMedCrossRefGoogle Scholar
  12. 12.
    Sauleda J, Garcia-Palmer FJ, Gonzalez G et al (2000) The activity of cytochrome oxidase is increased in circulating lymphocytes of patients with chronic obstructive pulmonary disease, asthma, and chronic arthritis. Am J Respir Crit Care Med 161:32–35PubMedGoogle Scholar
  13. 13.
    Kohnlein T, Welte T (2008) Alpha-1 antitrypsin deficiency: pathogenesis, clinical presentation, diagnosis, and treatment. Am J Med 121:3–9PubMedCrossRefGoogle Scholar
  14. 14.
    Marquis K, Debigare R, Lacasse Y et al (2002) Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166:809–813PubMedCrossRefGoogle Scholar
  15. 15.
    Swallow EB, Reyes D, Hopkinson NS et al (2007) Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax 62:115–120PubMedCrossRefGoogle Scholar
  16. 16.
    Tockman MS, Anthonisen NR, Wright EC, Donithan MG (1987) Airways obstruction and the risk for lung cancer. Ann Intern Med 106:512–518PubMedGoogle Scholar
  17. 17.
    Barbera JA, Peinado VI, Santos S (2003) Pulmonary hypertension in chronic obstructive pulmonary disease. Eur Respir J 21:892–905PubMedCrossRefGoogle Scholar
  18. 18.
    Rutten FH, Moons KG, Cramer MJ et al (2005) Recognising heart failure in elderly patients with stable chronic obstructive pulmonary disease in primary care: cross sectional diagnostic study. BMJ 331:1379PubMedCrossRefGoogle Scholar
  19. 19.
    Rutten FH, Cramer MJ, Lammers JW et al (2006) Heart failure and chronic obstructive pulmonary disease: An ignored combination? Eur J Heart Fail 8:706–711PubMedCrossRefGoogle Scholar
  20. 20.
    Watz H, Waschki B, Magnussen H (2010) Emphysema, airflow obstruction, and left ventricular filling. N Engl J Med 362:1638–1639PubMedCrossRefGoogle Scholar
  21. 21.
    Watz H, Waschki B, Meyer T et al (2010) Decreasing cardiac chamber sizes and associated heart dysfunction in COPD: role of hyperinflation. Chest 138:32–38PubMedCrossRefGoogle Scholar
  22. 22.
    Barr RG, Bluemke DA, Ahmed FS et al (2010) Percent emphysema, airflow obstruction, and impaired left ventricular filling. N Engl J Med 362:217–227PubMedCrossRefGoogle Scholar
  23. 23.
    Sin DD, Man SF (2005) Chronic obstructive pulmonary disease as a risk factor for cardiovascular morbidity and mortality. Proc Am Thorac Soc 2:8–11PubMedCrossRefGoogle Scholar
  24. 24.
    Chatila WM, Thomashow BM, Minai OA et al (2008) Comorbidities in chronic obstructive pulmonary disease. Proc Am Thorac Soc 5:549–555PubMedCrossRefGoogle Scholar
  25. 25.
    Barr RG, Mesia-Vela S, Austin JH et al (2007) Impaired flow-mediated dilation is associated with low pulmonary function and emphysema in ex-smokers: the Emphysema and Cancer Action Project (EMCAP) Study. Am J Respir Crit Care Med 176:1200–1207PubMedCrossRefGoogle Scholar
  26. 26.
    Fadini GP, Schiavon M, Cantini M et al (2006) Circulating progenitor cells are reduced in patients with severe lung disease. Stem Cells 24:1806–1813PubMedCrossRefGoogle Scholar
  27. 27.
    Handschin C, Spiegelman BM (2008) The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 454:463–469PubMedCrossRefGoogle Scholar
  28. 28.
    Jorgensen NR, Schwarz P (2008) Osteoporosis in chronic obstructive pulmonary disease patients. Curr Opin Pulm Med 14:122–127PubMedCrossRefGoogle Scholar
  29. 29.
    Calverley P, Pauwels R, Vestbo J et al (2003) Combined salmeterol and fluticasone in the treatment of chronic obstructive pulmonary disease: a randomised controlled trial. Lancet 361:449–456PubMedCrossRefGoogle Scholar
  30. 30.
    Jorgensen NR, Schwarz P, Holme I et al (2007) The prevalence of osteoporosis in patients with chronic obstructive pulmonary disease: a cross sectional study. Respir Med 101:177–185PubMedCrossRefGoogle Scholar
  31. 31.
    Vrieze A, Greef MH de, Wijkstra PJ, Wempe JB (2007) Low bone mineral density in COPD patients related to worse lung function, low weight and decreased fat-free mass. Osteoporos Int 18:1197–1202PubMedCrossRefGoogle Scholar
  32. 32.
    Carter JD, Patel S, Sultan FL et al (2008) The recognition and treatment of vertebral fractures in males with chronic obstructive pulmonary disease. Respir Med 102:1165–1172PubMedCrossRefGoogle Scholar
  33. 33.
    Bolton CE, Ionescu AA, Shiels KM et al (2004) Associated loss of fat-free mass and bone mineral density in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 170:1286–1293PubMedCrossRefGoogle Scholar
  34. 34.
    Lam J, Takeshita S, Barker JE et al (2000) TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106:1481–1488PubMedCrossRefGoogle Scholar
  35. 35.
    Ebeling PR (2008) Clinical practice. Osteoporosis in men. N Engl J Med 358:1474–1482PubMedCrossRefGoogle Scholar
  36. 36.
    John M, Lange A, Hoernig S et al (2006) Prevalence of anemia in chronic obstructive pulmonary disease: comparison to other chronic diseases. Int J Cardiol 111:365–370PubMedCrossRefGoogle Scholar
  37. 37.
    Similowski T, Agusti A, MacNee W, Schonhofer B (2006) The potential impact of anaemia of chronic disease in COPD. Eur Respir J 27:390–396PubMedCrossRefGoogle Scholar
  38. 38.
    Rana JS, Mittleman MA, Sheikh J et al (2004) Chronic obstructive pulmonary disease, asthma, and risk of type 2 diabetes in women. Diabetes Care 27:2478–2484PubMedCrossRefGoogle Scholar
  39. 39.
    Fletcher EC (1990) Chronic lung disease in the sleep apnea syndrome. Lung 168(Suppl):751–761PubMedCrossRefGoogle Scholar
  40. 40.
    Alam I, Lewis K, Stephens JW, Baxter JN (2007) Obesity, metabolic syndrome and sleep apnoea: all pro-inflammatory states. Obes Rev 8:119–127PubMedCrossRefGoogle Scholar
  41. 41.
    Carpagnano GE, Kharitonov SA, Resta O et al (2002) Increased 8-isoprostane and interleukin-6 in breath condensate of obstructive sleep apnea patients. Chest 122:1162–1167PubMedCrossRefGoogle Scholar
  42. 42.
    Ryan S, Taylor CT, McNicholas WT (2009) Systemic inflammation: a key factor in the pathogenesis of cardiovascular complications in obstructive sleep apnoea syndrome? Postgrad Med J 85:693–698PubMedCrossRefGoogle Scholar
  43. 43.
    Kohler M, Ayers L, Pepperell JC et al (2009) Effects of continuous positive airway pressure on systemic inflammation in patients with moderate to severe obstructive sleep apnoea: a randomised controlled trial. Thorax 64:67–73PubMedCrossRefGoogle Scholar
  44. 44.
    Constantinidis J, Ereliadis S, Angouridakis N et al (2008) Cytokine changes after surgical treatment of obstructive sleep apnoea syndrome. Eur Arch Otorhinolaryngol 265:1275–1279PubMedCrossRefGoogle Scholar
  45. 45.
    Carpagnano GE, Kharitonov SA, Resta O et al (2003) 8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy. Chest 124:1386–1392PubMedCrossRefGoogle Scholar
  46. 46.
    Constantinidis J, Ereliadis S, Angouridakis N et al (2008) Cytokine changes after surgical treatment of obstructive sleep apnoea syndrome. Eur Arch Otorhinolaryngol 265:1275–1279PubMedCrossRefGoogle Scholar
  47. 47.
    Yohannes AM, Willgoss TG, Baldwin RC, Connolly MJ (2010) Depression and anxiety in chronic heart failure and chronic obstructive pulmonary disease: prevalence, relevance, clinical implications and management principles. Int J Geriatr Psychiatry 25:1209–1221PubMedCrossRefGoogle Scholar
  48. 48.
    Ebbert JO, Wyatt KD, Hays JT et al (2010) Varenicline for smoking cessation: efficacy, safety, and treatment recommendations. Patient Prefer Adherence 4:355–362PubMedCrossRefGoogle Scholar
  49. 49.
    Vogelmeier C, Hederer B, Glaab T et al (2011) Tiotropium versus salmeterol for the prevention of exacerbations of COPD. N Engl J Med 364:1093–1103PubMedCrossRefGoogle Scholar
  50. 50.
    Vogelmeier C, Ramos-Barbon D, Jack D et al (2010) Indacaterol provides 24-hour bronchodilation in COPD: a placebo-controlled blinded comparison with tiotropium. Respir Res 11:135PubMedCrossRefGoogle Scholar
  51. 51.
    (o A) (1997) Routine nebulized ipratropium and albuterol together are better than either alone in COPD. The COMBIVENT Inhalation Solution Study Group. Chest 112:1514–1521Google Scholar
  52. 52.
    Taylor DR, Buick B, Kinney C et al (1985) The efficacy of orally administered theophylline, inhaled salbutamol, and a combination of the two as chronic therapy in the management of chronic bronchitis with reversible air-flow obstruction. Am Rev Respir Dis 131:747–751PubMedGoogle Scholar
  53. 53.
    Noord JA van, Aumann JL, Janssens E et al (2005) Comparison of tiotropium once daily, formoterol twice daily and both combined once daily in patients with COPD. Eur Respir J 26:214–222PubMedCrossRefGoogle Scholar
  54. 54.
    Burge PS, Calverley PM, Jones PW et al (2000) Randomised, double blind, placebo controlled study of fluticasone propionate in patients with moderate to severe chronic obstructive pulmonary disease: the ISOLDE trial. BMJ 320:1297–1303PubMedCrossRefGoogle Scholar
  55. 55.
    Burge PS, Calverley PM, Jones PW et al (2003) Prednisolone response in patients with chronic obstructive pulmonary disease: results from the ISOLDE study. Thorax 58:654–658PubMedCrossRefGoogle Scholar
  56. 56.
    Postma DS, Kerstjens HA (1999) Are inhaled glucocorticosteroids effective in chronic obstructive pulmonary disease? Am J Respir Crit Care Med 160:S66–S71PubMedGoogle Scholar
  57. 57.
    Calverley P, Pauwels R, Vestbo J et al (2003) Combined salmeterol and fluticasone in the treatment of chronic obstructive pulmonary disease: a randomised controlled trial. Lancet 361:449–456PubMedCrossRefGoogle Scholar
  58. 58.
    Calverley PM, Anderson JA, Celli B et al (2007) Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med 356:775–789PubMedCrossRefGoogle Scholar
  59. 59.
    Calverley PM, Boonsawat W, Cseke Z et al (2003) Maintenance therapy with budesonide and formoterol in chronic obstructive pulmonary disease. Eur Respir J 22:912–919PubMedCrossRefGoogle Scholar
  60. 60.
    Aaron SD, Vandemheen KL, Fergusson D et al (2007) Tiotropium in combination with placebo, salmeterol, or fluticasone-salmeterol for treatment of chronic obstructive pulmonary disease: a randomized trial. Ann Intern Med 146:545–555PubMedGoogle Scholar
  61. 61.
    Szafranski W, Cukier A, Ramirez A et al (2003) Efficacy and safety of budesonide/formoterol in the management of chronic obstructive pulmonary disease. Eur Respir J 21:74–81PubMedCrossRefGoogle Scholar
  62. 62.
    Grootendorst DC, Gauw SA, Benschop N et al (2003) Efficacy of the novel phosphodiesterase-4 inhibitor BAY 19-8004 on lung function and airway inflammation in asthma and chronic obstructive pulmonary disease (COPD). Pulm Pharmacol Ther 16:341–347PubMedCrossRefGoogle Scholar
  63. 63.
    Grootendorst DC, Gauw SA, Verhoosel RM et al (2007) Reduction in sputum neutrophil and eosinophil numbers by the PDE4 inhibitor roflumilast in patients with COPD. Thorax 62:1081–1087PubMedCrossRefGoogle Scholar
  64. 64.
    Young RP, Hopkins R, Eaton TE (2009) Pharmacological actions of statins: potential utility in COPD. Eur Respir Rev 18:222–232PubMedCrossRefGoogle Scholar
  65. 65.
    Garvey C, Fromer L, Saver DF, Yawn BP (2010) Pulmonary rehabilitation: an underutilized resource in primary COPD care. Phys Sportsmed 38:54–60PubMedCrossRefGoogle Scholar
  66. 66.
    Schulze M, Song B, Gietzelt M et al (2010) Supporting rehabilitation training of COPD patients through multivariate sensor-based monitoring and autonomous control using a Bayesian network: prototype and results of a feasibility study. Inform Health Soc Care 35:144–156PubMedCrossRefGoogle Scholar
  67. 67.
    De Backer LA, Ides K, Daems D et al (2010) Pulmonary rehabilitation and non-invasive ventilation in COPD. Acta Clin Belg 65:330–335Google Scholar
  68. 68.
    Ninot G, Moullec G, Picot MC et al (2010) Cost-saving effect of supervised exercise associated to COPD self-management education program. Respir Med 105:377–385PubMedCrossRefGoogle Scholar
  69. 69.
    Troosters T, Gosselink R, Janssens W, Decramer M (2010) Exercise training and pulmonary rehabilitation: new insights and remaining challenges. Eur Respir Rev 19:24–29PubMedCrossRefGoogle Scholar
  70. 70.
    Nici L, Lareau S, ZuWallack R (2010) Pulmonary rehabilitation in the treatment of chronic obstructive pulmonary disease. Am Fam Physician 82:655–660PubMedGoogle Scholar
  71. 71.
    Marciniuk DD, Brooks D, Butcher S et al (2010) Optimizing pulmonary rehabilitation in chronic obstructive pulmonary disease – practical issues: a Canadian Thoracic Society Clinical Practice Guideline. Can Respir J 17:159–168PubMedGoogle Scholar
  72. 72.
    Troosters T, Probst VS, Crul T et al (2010) Resistance training prevents deterioration in quadriceps muscle function during acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 181:1072–1077PubMedCrossRefGoogle Scholar
  73. 73.
    Puhan MA, Scharplatz M, Troosters T, Steurer J (2005) Respiratory rehabilitation after acute exacerbation of COPD may reduce risk for readmission and mortality – a systematic review. Respir Res 6:54PubMedCrossRefGoogle Scholar
  74. 74.
    Casaburi R, Kukafka D, Cooper CB et al (2005) Improvement in exercise tolerance with the combination of tiotropium and pulmonary rehabilitation in patients with COPD. Chest 127:809–817PubMedCrossRefGoogle Scholar
  75. 75.
    (o A) (2010) Preventing exacerbations in COPD. Drug Ther Bull 48:74–77Google Scholar
  76. 76.
    Engel RM, Vemulpad S (2009) Progression to chronic obstructive pulmonary disease (COPD): Could it be prevented by manual therapy and exercise during the „at risk“ stage (stage 0)? Med Hypotheses 72:288–290PubMedCrossRefGoogle Scholar
  77. 77.
    Koczulla AR et al. (2012) COPD and rehabilitation. In: Mooren FC, Skinner JS (Hrsg) Encyclopedia of exercise medicine in health and disease. Springer, Berlin Heidelberg New York Tokyo (im Druck)Google Scholar
  78. 78.
    Halle M, Heitmann RH, Kenn K et al (2008) Evidence and technique for exercise training in patients with COPD. Pneumologie 62:209–221PubMedCrossRefGoogle Scholar
  79. 79.
    (o A) American College of Sports Medicine Position Stand (1998) The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc 30:975–991Google Scholar
  80. 80.
    The National Emphysema Treatment Trial Research Group (1999) Rationale and design of The National Emphysema Treatment Trial. A prospective randomized trial of lung volume reduction surgery. Chest 116:1750–1761CrossRefGoogle Scholar
  81. 81.
    Sciurba FC, Ernst A, Herth FJ et al (2010) A randomized study of endobronchial valves for advanced emphysema. N Engl J Med 363:1233–1244PubMedCrossRefGoogle Scholar
  82. 82.
    Strange C, Herth FJ, Kovitz KL et al (2007) Design of the Endobronchial Valve for Emphysema Palliation Trial (VENT): a non-surgical method of lung volume reduction. BMC Pulm Med 7:10PubMedCrossRefGoogle Scholar
  83. 83.
    Cassivi SD, Meyers BF, Battafarano RJ et al (2002) Thirteen-year experience in lung transplantation for emphysema. Ann Thorac Surg 74:1663–1669PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A.-R. Koczulla
    • 1
  • T. Greulich
    • 1
  • S. Schmid
    • 1
  • K. Kenn
    • 2
  • I. Heinzelmann
    • 2
  • C. Vogelmeier
    • 1
  1. 1.Klinik für Innere Medizin mit Schwerpunkt PneumologiePhilipps Universität MarburgMarburgDeutschland
  2. 2.Pneumologie, Allergologie und SchlafmedizinSchön Klinik - Berchtesgadener LandSchönau am KönigseeDeutschland

Personalised recommendations