Der Pneumologe

, Volume 8, Issue 4, pp 252–259

Stellenwert der PET-CT in der thorakalen Diagnostik

Leitthema
  • 121 Downloads

Zusammenfassung

Bei thorakalen Erkrankungen hängen die beste Prognose und effektive Therapie von einem akkuraten diagnostischen Staging ab. Insbesondere beim nichtkleinzelligen Lungenkarzinom ist die Entscheidung für ein Therapieregime (Resektion alleine oder in Kombination mit Chemo- oder Radiotherapie) von immenser Bedeutung für die Heilungschancen. Leider weisen viele Patienten bereits bei der Erstdiagnose Fernmetastasen auf. Sowohl die Computertomographie (CT) als auch die Positronenemissionstomographie (PET) mit Fluordesoxyglukose (FDG) spielen eine entscheidende Rolle beim diagnostischen Staging des Lungenkarzinoms. Die CT liefert eine hervorragende anatomische Darstellung, ist aber eingeschränkt in der Dignitätsbeurteilung v. a. von mediastinalen Lymphknoten. Die FDG-PET ist besonders akkurat in der Detektion von mediastinalen Lymphknotenmetastasen und extrathorakalen Fernmetastasen, liefert aber nur schlechte anatomische Informationen, sodass zusätzliche morphologische Untersuchungen für die genaue Lokalisierung von Läsionen notwendig sind. Daher bieten integrierte PET-CT-Hybridscanner deutliche Vorteile gegenüber der Diagnostik von PET und CT alleine und der visuellen Korrelation der Bilddaten. Durch den Synergismus eines kombinierten PET-CT-Systems werden Läsionen besser detektiert und exakter lokalisiert, sodass mit der verbesserten Diagnostik sicherere Therapieentscheidungen getroffen werden können und damit letztendlich auch eine Besserung der Prognose von Erkrankungen wie dem Lungenkarzinom zu erwarten ist.

Schlüsselwörter

PET-CT FDG-PET Lungenkarzinom Thorakale Malignome Staging 

Value of PET-CT in the diagnostic workup of thoracic diseases

Abstract

In thoracic diseases the best prognosis and the most effective treatment can only by achieved with an accurate diagnostic staging. Especially in non-small cell lung cancer (NSCLC), the decision for a therapeutic regime like surgical resection of the tumour either alone or in combination with chemo- or radiotherapy changes the chances of cure immensely. However, many patients present metastatic disease at the time of diagnosis. Both computed tomography (CT) and positron emission tomography (PET) using fluorodeoxyglucose (FDG) play an important role in the diagnosis and staging of lung cancer. CT provides excellent morphologic information but has limitations in differentiating between benign and malignant lesions especially in mediastinal lymph nodes. FDG-PET is highly accurate in the detection of mediastinal lymph node metastases as well as extrathoracic metastases. However, additional morphologic examination is needed to properly locate a lesion due to the poor anatomic information provided by PET. Thus, imaging with integrated PET-CT hybrid scanners offers essential advantages in comparison to PET or CT alone and visual correlation of separate imaging data. A combined PET-CT system provides a synergism of both techniques so that lesions can be more easily detected and exactly localized. With such a diagnostic tool, therapeutic decisions are improved, hopefully leading to a prognostic improvement of diseases like lung cancer.

Keywords

PET-CT FDG PET Lung cancer Thoracic malignant tumours Staging 

Literatur

  1. 1.
    Stergar H, Bockisch A, Eschmann SM et al (2007) Influence of PET/CT-introduction on PET scanning frequency and indications. Results of a multicenter study. Nuklearmedizin 46:57–64PubMedGoogle Scholar
  2. 2.
    Keidar Z, Haim N, Guralnik L et al (2004) PET-CT using 18F-FDG in suspected lung cancer recurrence: diagnostic value and impact on patient management. J Nucl Med 45:1640–1646PubMedGoogle Scholar
  3. 3.
    Lardinois D, Weder W, Hany TF et al (2003) Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 348:2500–2507PubMedCrossRefGoogle Scholar
  4. 4.
    Blodgett TM, Meltzer CC, Townsend DW (2007) PET/CT: form and function. Radiology 242:360–385PubMedCrossRefGoogle Scholar
  5. 5.
    Buck AK, Herrmann K, Stargardt T et al (2010) Economic evaluation of PET and PET/CT in oncology: evidence and methodologic approaches. J Nucl Med 51:401–412PubMedCrossRefGoogle Scholar
  6. 6.
    Krause BJ, Beyer T, Bockisch A et al (2007) FDG-PET/CT in der Onkologie. Nuklearmedizin 46:291–301PubMedGoogle Scholar
  7. 7.
    Reske SN, Kotzerke J (2001) FDG-PET for clinical use. Results of the 3rd German interdisciplinary consensus conference, „Onko-PET III“, 21 July and 19 September 2000. Eur J Nucl Med 28:1707–1723PubMedCrossRefGoogle Scholar
  8. 8.
    Ido T, Wan CN, Casella V et al (1978) Labeled 2-dexoy-D-glucose analogs: 18F labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J Labelled Comp Radiopharm 14:175–183CrossRefGoogle Scholar
  9. 9.
    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899PubMedCrossRefGoogle Scholar
  10. 10.
    Warburg O, Posener K, Negelein E (1924) Über den Stoffwechsel der Carcinomzelle. Biochem Z 152:309–335Google Scholar
  11. 11.
    Weisdorf DJ, Craddock PR, Jacob HS (1982) Glycogenolysis versus glucose transport in human granulocytes: differential activation in phagocytosis and chemotaxis. Blood 60:888–893PubMedGoogle Scholar
  12. 12.
    Gould MK, Maclean CC, Kuschner WG et al (2001) Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 285:914–924PubMedCrossRefGoogle Scholar
  13. 13.
    Yi CA, Lee KS, Kim BT et al (2006) Tissue characterization of solitary pulmonary nodule: comparative study between helical dynamic CT and integrated PET/CT. J Nucl Med 47:443–450PubMedGoogle Scholar
  14. 14.
    Subedi N, Scarsbrook A, Darby M et al (2009) The clinical impact of integrated FDG PET-CT on management decisions in patients with lung cancer. Lung Cancer 64:301–307PubMedCrossRefGoogle Scholar
  15. 15.
    Fischer B, Lassen U, Mortensen J et al (2009) Preoperative staging of lung cancer with combined PET-CT. N Engl J Med 361:32–39PubMedCrossRefGoogle Scholar
  16. 16.
    Van Tinteren H, Hoekstra OS, Smit EF et al (2002) Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet 359:1388–1393CrossRefGoogle Scholar
  17. 17.
    Chee KG, Nguyen DV, Brown B et al (2008) Positron emission tomography and improved survival in patients with lung cancer. Arch Intern Med 168:1541–1549PubMedCrossRefGoogle Scholar
  18. 18.
    Morgenstern D, Goodgame B, Baggstrom MQ et al (2008) The effect of FDG-PET on the stage distribution of non-small cell lung cancer. J Thorac Oncol 3:135–139CrossRefGoogle Scholar
  19. 19.
    Toloza EM, Harpole L, McCrory DC (2003) Noninvasive staging of non-small cell lung cancer: a review of the current evidence. Chest 123:137S–146SPubMedCrossRefGoogle Scholar
  20. 20.
    Birim O, Kappetein AP, Stijnen T, Bogers AJ (2005) Meta-analysis of positron-emission tomographic and computed tomographic imaging in detecting mediastinal lymph node metastases in non-small-cell lung cancer. Ann Thorac Surg 79:375–382PubMedCrossRefGoogle Scholar
  21. 21.
    De Leyn P, Stoobants S, Dewever W et al (2006) Prospective comparative study of integrated PET-CT with remediastinoscopy in the assessment of residual mediastinal disease after induction chemotherapy for mediastinoscopy proven stage IIIa-N2 non-small-cell lung cancer. J Clin Oncol 24:3333–3339CrossRefGoogle Scholar
  22. 22.
    Hellwig D, Baum RP, Kirsch CM (2009) FDG-PET, PET/CT and conventional nuclear medicine procedures in the evaluation of lung cancer. A systematic review. Nuklearmedizin 48:59–69PubMedGoogle Scholar
  23. 23.
    Sung YM, Lee KS, Kim BT et al (2008) Nonpalpable supraclavicular lymph nodes in lung cancer patients: preoperative characterization with F-FDG PET/CT. AJR Am J Roentgenol 190:246–252PubMedCrossRefGoogle Scholar
  24. 24.
    Al-Sarraf N, Aziz R, Gately K et al (2008) Pattern and predictors of occult mediastinal lymph node involvement in non-small cell lung cancer patients with negative mediastinal uptake on positron emission tomography. Eur J Cardiothorac Surg 33:104–109PubMedCrossRefGoogle Scholar
  25. 25.
    Hintze C, Allmendinger T, Thierfelder C et al (2010) Prospektiv getriggertes Dual-Source CT des Thorax mit hohem Pitch in freier Atmung: Vergleich zum retrospektiv gegateten 4D-CT und Spiral-CT in Atemanhalt am Thoraxphantom (artiCHEST). Fortschr Rontgenstr 182:A7CrossRefGoogle Scholar
  26. 26.
    Yau YY, Chan WS, Tam YM et al (2005) Application of intravenous contrast in PET/CT: Does it really introduce significant attenuation correction error? J Nucl Med 46:283–291PubMedGoogle Scholar
  27. 27.
    Blodgett TM, Mehta AS, Mehta AS et al (2011) PET/CT artifacts. Clin Imaging 35:49–63PubMedCrossRefGoogle Scholar
  28. 28.
    Brady MJ, Thomas J, Wong TZ et al (2009) Adrenal nodules at FDG PET/CT in patients known to have or suspected of having lung cancer: a proposal for an efficient diagnostic algorithm. Radiology 250:523–530PubMedCrossRefGoogle Scholar
  29. 29.
    Takenaka D, Ohno Y, Koyama H et al (2009) Integrated FDG-PET/CT vs. standard radiological examinations: comparison of capability for assessment of postoperative recurrence in non-small cell lung cancer patients. Eur J Radiol 74:458–464PubMedCrossRefGoogle Scholar
  30. 30.
    Nestle U, Walter K, Schmidt S et al (1999) 18F-deoxy glucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44:593–597PubMedCrossRefGoogle Scholar
  31. 31.
    Erdi YE, Ro sen zweig K, Erdi AK et al (2002) Radiotherapy treatment planning for patients with nonsmall cell lung cancer using positron emission tomography (PET). Radiother Oncol 62:51–60PubMedCrossRefGoogle Scholar
  32. 32.
    Mah K, Caldwell CB, Ung YC et al (2002) The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 52:339–350PubMedCrossRefGoogle Scholar
  33. 33.
    Marnitz S, Messer P, Stuschke M et al (2005) Einsatz der PET-CT zur Verbesserung der Bestrahlungsplanung nichtkleinzelliger Bronchialkarzinome. Onkologie 11:859–865CrossRefGoogle Scholar
  34. 34.
    Biehl KJ, Kong FM, Dehdashti F et al (2006)18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: Is a single standardized uptake value threshold approach appropriate? J Nucl Med 47:1808–1812PubMedGoogle Scholar
  35. 35.
    Cherk MH, Foo SS, Poon AM et al (2006) Lack of correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in non-small cell lung cancer assessed by 18F-fluoromisonidazole and 18F-FDG PET. J Nucl Med 47:1921–1926PubMedGoogle Scholar
  36. 36.
    Eschmann SM, Friedel G, Paulsen F et al (2007) 18F-FDG PET for assessment of therapy response and preoperative re-evaluation after neoadjuvant radio-chemotherapy in stage III non-small cell lung cancer. Eur J Nucl Med Mol Imaging 4:463–471CrossRefGoogle Scholar
  37. 37.
    Nahmias C, Hanna WT, Wahl CM et al (2007) Time course of early response to chemotherapy in non-small cell lung cancer patients with 18F-FDG PET/CT. J Nucl Med 5:744–751CrossRefGoogle Scholar
  38. 38.
    Yamamoto Y, Kameyama R, Murota M et al (2009) Early assessment of therapeutic response using FDG PET in small cell lung cancer. Mol Imaging Biol 6:467–472CrossRefGoogle Scholar
  39. 39.
    Cerfolio RJ, Bryant AS, Ojha B (2006) Restaging patients with N2 (stage IIIa) non-small cell lung cancer after neoadjuvant chemotherapy: a prospective study. J Thorac Cardiovasc Surg 131:1229–1235PubMedCrossRefGoogle Scholar
  40. 40.
    De Leyn P, Stroobants S, De Wever W et al (2006) Prospective comparative study of integrated positron emission tomography-computed tomography scan compared with remediastinoscopy in the assessment of residual mediastinal lymph node disease after induction chemotherapy for mediastinoscopy-proven stage IIIA-N2 non-small-cell lung cancer: a Leuven Lung Cancer Group study. J Clin Oncol 24:3333–3339CrossRefGoogle Scholar
  41. 41.
    Poettgen C, Theegarten D, Eberhardt W et al (2007) Correlation of PET/CT findings and histopathology after neoadjuvant therapy in non-small cell lung cancer. Oncology 73:316–323PubMedCrossRefGoogle Scholar
  42. 42.
    Weber WA, Petersen V, Schmidt B et al (2003) Positron emission tomography in non-small cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 21:2651–2657PubMedCrossRefGoogle Scholar
  43. 43.
    Dietlein M, Kobe C, Neumaier B, Ullrich R (2010) Nichtkleinzelliges Bronchialkarzinom – Molekulare Bildgebung mittels PET und translationale Forschung. Onkopipeline 3:99–105CrossRefGoogle Scholar
  44. 44.
    Baum RP, Prasad V (2008) Stellenwert der PET bzw. PET/CT mit F-18-FDG beim kleinzelligen Lungenkarzinom. Onkologie 14:774–782CrossRefGoogle Scholar
  45. 45.
    Yildirim H, Metintas M, Entok E et al (2009) Clinical value of fluorodeoxyglucose-positron emission tomography/computed tomography in differentiation of malignant mesothelioma from asbestos-related benign pleural disease: an observational pilot study. J Thorac Oncol 4:1480–1484PubMedCrossRefGoogle Scholar
  46. 46.
    Orki A, Akin O et al (2009) The role of positron emission tomography/computed tomography in the diagnosis of pleural diseases. Thorac Cardiovasc Surg 57:217–221PubMedCrossRefGoogle Scholar
  47. 47.
    Flores RM, Akhust T et al (2003) Positron emmision tomography defines metastatic disease but not locoregional disease in patients with malignant pleural mesothelioma. J Thorac Cardiovasc Surg 126:11–15PubMedCrossRefGoogle Scholar
  48. 48.
    Sackmann S (2010) Klinik und Diagnostik des malignen Pleuramesothelioms. Pneumologe 7:19–27CrossRefGoogle Scholar
  49. 49.
    Teirstein AS, Machac J, Almeida O et al (2007) Results of 188 whole-body fluorodeoxyglucose positron emission tomography scans in 137 patients with sarcoidosis. Chest 132:1949–1953PubMedCrossRefGoogle Scholar
  50. 50.
    Verboom P, Herder GJ, Hoekstra OS et al (2002) Staging of non-small-cell lung cancer and application of FDG-PET. A cost modeling approach. Int J Technol Assess Health Care 18:576–585PubMedGoogle Scholar
  51. 51.
    Herder GJ, Kramer H, Hoekstra OS et al (2006) Traditional versus up-front [18F] fluorodeoxyglucose-positron emission tomography staging of non-small-cell lung cancer: a Dutch cooperative randomized study. J Clin Oncol 24:1800–1806PubMedCrossRefGoogle Scholar
  52. 52.
    Langer A (2010) Kosteneffektivität diagnostischer Verfahren. Nichtkleinzelliges Bronchialkarzinom. Onkologie 16:992–1002CrossRefGoogle Scholar
  53. 53.
    Biersack HJ (2009) Bewertung der PET-CT. Produktsicherheit, klinischer Nutzen, Erstattung im deutschen und US-amerikanischen Gesundheitssystem. Bundesgesundheitsblatt 52:594–600CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Nuklearmedizin und molekulare BildgebungHELIOS Klinikum Emil von BehringBerlinDeutschland

Personalised recommendations