Der Pneumologe

, Volume 7, Issue 6, pp 412–422 | Cite as

Multiresistente pulmonale Erreger auf der Intensivstation

Leitthema
  • 219 Downloads

Zusammenfassung

Multiresistente pulmonale Erreger sind ein zunehmendes Problem auf den Intensivstationen. Die Inzidenz der nosokomialen Pneumonie (HAP) ist am höchsten bei invasiv beatmeten Patienten. Jeder Beatmungstag ist mit etwa 1% Beatmungpneumonie (VAP) assoziiert. Die typischen pulmonalen Problemkeime sind Pseudomonas aeruginosa, Acinetobacter baumannii, methicillinresistente Staphylococcus aureus (MRSA) und Enterobakterien, die „Extended-spectrum“-β-Lactamasen bilden (ESBL).

Die Effektivität der HAP/VAP-Behandlung hängt entscheidend von einer frühzeitigen, richtigen empirischen Therapie ab. Unter anderem aus diesem Grund werden auf den Intensivstationen in extremem Ausmaß Antibiotika eingesetzt. Die Menge an Antibiotika, welche hier verwandt wird, ist jedoch assoziiert mit der Entwicklung multiresistenter Problemkeime.

Wichtig sind daher Strategien für eine möglichst effektive, aber gleichzeitig den Antibiotikaverbrauch einschränkende Therapie auf den Intensivstationen. Maßnahmen für die Infektionskontrolle sollten zudem zum Standard gehören. Antibiotika-Stewardship-Strategien sollten entwickelt und in Studien untersucht werden.

Schlüsselwörter

Beatmungspneumonie Methicillinresistente Staphylococcus aureus Infektionskontrolle Antibiotika 

Multidrug-resistant pulmonary pathogens in the ICU

Abstract

Multiresistant bacteria are most prominent on intensive care units. The incidence of nosocomial pneumonia is highest in patients with invasive ventilation. The typical resistant bacteria in the lung are Pseudomonas aeruginosa, Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus (MRSA) and enterobacteria producing extended-spectrum beta-lactamases (ESBL). Broad-spectrum antibiotics are used in intensive care medicine in many cases, but the number of antibiotic treatments used in the ICU is associated with the development of multiresistant organisms.

Strategies for high-quality antibiotic treatment with emphasis on diminishing overuse are essential. Infection control and antibiotic stewardship strategies should be developed.

Keywords

Pneumonia, ventilator-associated Methicillin-resistant Staphylococcus aureus Infection control Antibiotics 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Barber M (1961) Methicillin-resistant staphylococci. J Clin Pathol 14:385–393CrossRefPubMedGoogle Scholar
  2. 2.
    Benner EJ, Kayser FH (1968) Growing clinical significance of methicillin-resistant Staphylococcus aureus. Lancet 2:741PubMedGoogle Scholar
  3. 3.
    Bergstrom CT, Lo M, Lipsitch M (2004) Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals. Proc Natl Acad Sci U S A 101(36):13285–13290CrossRefPubMedGoogle Scholar
  4. 4.
    Beyersmann J, Gastmeier P, Grundmann H et al (2006) Use of multistate models to assess prolongation of intensive care unit stay due to nosocomial infection. Infect Control Hosp Epidemiol 27:493–499CrossRefPubMedGoogle Scholar
  5. 5.
    Chaberny IF, Schwab F, Ziesing S et al (2008) Impact of routine surgical ward and intensive care unit admission surveillance cultures on hospital-wide nosocomial methicillin-resistant Staphylococcus aureus infections in a university hospital: an interrupted time-series analysis. J Antimicrob Chemother 62:1422–1429CrossRefPubMedGoogle Scholar
  6. 6.
    Chaberny IF, Bindseil A, Sohr D, Gastmeier P (2008) A point-prevalence study for MRSA in a German university hospital to identify patients at risk and to evaluate an established admission screening procedure. Infection 36:526–532CrossRefPubMedGoogle Scholar
  7. 7.
    Chastre J, Wolff M, Fagon JY et al (2003) Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA 290:2588–2598CrossRefPubMedGoogle Scholar
  8. 8.
    Cosgrove SE, Sakoulas G, Perencevich EN et al (2003) Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis 1:53–59CrossRefGoogle Scholar
  9. 9.
    Christ-Crain M, Stolz D, Bingisser R et al (2006) Procalcitonin guidance of antibiotic therapy in community-acquired pneumonia: a randomized trial. Am J Respir Crit Care Med 174(1):84–93CrossRefPubMedGoogle Scholar
  10. 10.
    Smet AM de, Kluytmans JA, Cooper BS et al (2009) Decontamination of the digestive tract and oropharynx in ICU patients. N Engl J Med 360(1):20–31CrossRefPubMedGoogle Scholar
  11. 11.
    Jonge E de, Schultz M, Spanjaard L et al (2003) Effects of selective decontamination of digestive tract on mortality and acquisition of resistant bacteria in intensive care: a randomized controlled trial. Lancet 362:1011–1016CrossRefPubMedGoogle Scholar
  12. 12.
    Diep BA, Chambers HF, Graber CJ et al (2008) Emergence of multidrug-resistant, community-associated, methicillin-resistant Staphylococcus aureus clone USA300 in men who have sex with men. Ann Intern Med 148:249–257PubMedGoogle Scholar
  13. 13.
    Drakulovic MB, Torres A, Bauer TT et al (1999) Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial. Lancet 354:1851–1858CrossRefPubMedGoogle Scholar
  14. 14.
    Ernst EJ, Raley G, Herwaldt LA, Diekema DJ (2005) Importance of control group selection for evaluating antimicrobial use as a risk factor for methicillin-resistant Staphylococcus aureus bacteremia. Infect Control Hosp Epidemiol 26:634–637CrossRefPubMedGoogle Scholar
  15. 15.
    Fridkin SK, Hageman JC, Morrison M et al (2005) Methicillin-resistant Staphylococcus aureus disease in three communities. Active bacterial core surveillance program of the emerging infections program network. N Engl J Med 352:1436–1444CrossRefPubMedGoogle Scholar
  16. 16.
    Gaynes R, Edwards JR (2005) Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis 41:848CrossRefPubMedGoogle Scholar
  17. 17.
    Henderson A, Kelly W, Wright M (1992) Fulminant primary Pseudomonas aeruginosa pneumonia and septicaemia in previously well adults. Intensive Care Med 18:430CrossRefPubMedGoogle Scholar
  18. 18.
    Hidayat LK, Hsu DI, Quist R et al (2006) High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch Intern Med 166:2138–2144CrossRefPubMedGoogle Scholar
  19. 19.
    Iregui M, Ward S, Sherman G et al (2002) Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest 122:262–268CrossRefPubMedGoogle Scholar
  20. 20.
    Jacoby G, Han P, Tran J (1997) Comparative in vitro activities of carbapenem L-749,345 and other antimicrobials against multiresistant gram-negative clinical pathogens. Antimicrob Agents Chemother 41:1830PubMedGoogle Scholar
  21. 21.
    Jacoby GA (2009) AmpC beta-lactamases. Clin Microbiol Rev 22(1):161–182CrossRefPubMedGoogle Scholar
  22. 22.
    Jappe U, Heuck D, Strommenger B et al (2008) Staphylococcus aureus in dermatology outpatients with special emphasis on community-associated methicillin-resistant strains. J Invest Dermatol 128:2655–2664CrossRefPubMedGoogle Scholar
  23. 23.
    Jeffres MN, Isakow W, Doherty JA et al (2006) Predictors of mortality for methicillin-resistant Staphylococcus aureus health-care-associated pneumonia: specific evaluation of vancomycin pharmacokinetic indices. Chest 130:947–995CrossRefPubMedGoogle Scholar
  24. 24.
    Kaase M (2010) Bericht des NRZ für gramnegative Krankenhauserreger. Carbapenemase-tragende gramnegative Erreger im Zeitraum Mai bis Juni 2010. Epidemiologisches Bulletin Nr. 28, S 267Google Scholar
  25. 25.
    Kasiakou SK, Lawrence KR, Choulis N, Falagas ME (2005) Continuous versus intermittent intravenous administration of antibacterials with time-dependent action: a systematic review of pharmacokinetic and pharmacodynamic parameters. Drugs 65:2499–2511CrossRefPubMedGoogle Scholar
  26. 26.
    Kirschke DL, Jones TF, Craig AS et al (2003) Pseudomonas aeruginosa and Serratia marcescens contamination associated with a manufacturing defect in bronchoscopes. N Engl J Med 348:214CrossRefPubMedGoogle Scholar
  27. 27.
    Looney WJ, Narita M, Mühlemann K (2009) Stenotrophomonas maltophilia: an emerging opportunist human pathogen. Lancet Infect Dis 9:312–323CrossRefPubMedGoogle Scholar
  28. 28.
    Lynfield R, Farley MM (2005) Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med 7:1436–1444Google Scholar
  29. 29.
    Maree CL, Daum RS, Boyle-Vavra S et al (2007) Community-associated methicillin-resistant Staphylococcus aureus isolates causing healthcare-associated infections. Emerg Infect Dis 13:236–242CrossRefPubMedGoogle Scholar
  30. 30.
    Maroko R, Cooper A, Dukart G, Dartios H (2007) Results of phase 3 study comparing a tigecycline regimen with an imipenem/cilastatin regimen in treatment of patients with hospital acquired pneumonia [poster L-730]. 47th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC); Chicago, ILGoogle Scholar
  31. 31.
    Meyer E, Sohr D, Gastmeier P, Geffers C (2009) New identification of outliers and ventilator-associated pneumonia rates from 2005 to 2007 within the German nosocomial infection surveillance system. J Hosp Infect 73:246–252CrossRefPubMedGoogle Scholar
  32. 32.
    Micek ST, Dunne M, Kollef MH (2005) Pleuropulmonary complications of Panton-Valentine leukocidin-positive community-acquired methicillin-resistant Staphylococcus aureus: importance of treatment with antimicrobials inhibiting exotoxin production. Chest 128:2732–2738CrossRefPubMedGoogle Scholar
  33. 33.
    Moellering RC (2003) Linezolid: the first oxazolidinone antimicrobial. Ann Intern Med 21:135–142Google Scholar
  34. 34.
    Morales G, Picazo JJ, Baos E et al (2010) Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus. Clin Infect Dis 50:821–825CrossRefPubMedGoogle Scholar
  35. 35.
    Naas T, Nordmann P, Vedel G, Poyart C (2005) Plasmid-mediated carbapenem-hydrolyzing beta-lactamase KPC in a Klebsiella pneumoniae isolate from France. Antimicrob Agents Chemother 49:4423CrossRefPubMedGoogle Scholar
  36. 36.
    Nobre V, Harbarth S, Graf JD et al (2008) Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am J Respir Crit Care Med 177(5):498–505CrossRefPubMedGoogle Scholar
  37. 37.
    Ott E, Bange FC, Reichardt C et al (2010) Costs of nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus. J Hosp Infect [in print]Google Scholar
  38. 38.
    Paterson DL, Ko WC, Von Gottberg A et al (2004) National prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum beta-lactamase production in nosocomial Infections. Ann Intern Med 40:26Google Scholar
  39. 39.
    Piroth L, Aube H, Doise JM, Vincent-Martin M (1998) Spread of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae: are beta-lactamase inhibitors of therapeutic value? Clin Infect Dis 27:76CrossRefPubMedGoogle Scholar
  40. 40.
    Powers JH, Ross DB, Lin D, Soreth J (2004) Linezolid and vancomycin for methicillin-resistant Staphylococcus aureus nosocomial pneumonia: the subtleties of subgroup analyses. Chest 126:314CrossRefPubMedGoogle Scholar
  41. 41.
    Reinhart K, Brunkhorst FM, Bone HG et al (2010) Prevention, diagnosis, therapy and follow-up care of sepsis: 1st revision of S-2 k guidelines of the German Sepsis Society (Deutsche Sepsis-Gesellschaft e.V. (DSG)) and the German Interdisciplinary Association of Intensive Care and Emergency Medicine (Deutsche Interdisziplinäre Vereinigung für Intensiv- und Notfallmedizin (DIVI)). Ger Med Sci 8:Doc14PubMedGoogle Scholar
  42. 42.
    Rhomberg PR, Jones RN (2005) Contemporary activity of meropenem and comparator broad-spectrum agents: MYSTIC program report from the United States component. Diagn Microbiol Infect Dis 57:207CrossRefGoogle Scholar
  43. 43.
    Robicsek A, Strahilevitz J, Jacoby GA et al (2006) Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12:83–88CrossRefPubMedGoogle Scholar
  44. 44.
    Rose L, Rogel K, Redl L, Cade JF (2009) Implementation of a multimodal infection control program during an Acinetobacter outbreak. Intensive Crit Care Nurs 25:57–63CrossRefPubMedGoogle Scholar
  45. 45.
    Sader HS, Streit JM, Fritsche TR, Jones RN (2006) Antimicrobial susceptibility of gram-positive bacteria isolated from European medical centres: results of the Daptomycin surveillance programme (2002–2004). Clin Microbiol Infect 12:844–852CrossRefPubMedGoogle Scholar
  46. 46.
    Safdar N, Bradley EA (2008) The risk of infection after nasal colonization with Staphylococcus aureus. Am J Med 121:310–315CrossRefPubMedGoogle Scholar
  47. 47.
    Safdar N, Dezfulian C, Collard HR, Saint S (2005) Clinical and economic consequences of ventilator-associated pneumonia: a systematic review. Crit Care Med 33:2184–2193CrossRefPubMedGoogle Scholar
  48. 48.
    Schroeder S, Hochreiter M, Koehler T et al (2009) Procalcitonin (PCT)-guided algorithm reduces length of antibiotic treatment in surgical intensive care patients with severe sepsis: results of a prospective randomized study. Langenbecks Arch Surg 394(2):221–226CrossRefPubMedGoogle Scholar
  49. 49.
    Shorr AF (2007) Epidemiology of staphylococcal resistance. Clin Infect Dis 45(Suppl 3):S171–S176CrossRefPubMedGoogle Scholar
  50. 50.
    Stevens DL, Herr D, Lampiris H et al (2002) Linezolid versus vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis 34:1481–149CrossRefPubMedGoogle Scholar
  51. 51.
    Stolz D, Smyrnios N, Eggimann P et al (2009) Procalcitonin for reduced antibiotic exposure in ventilator-associated pneumonia: a randomised study. Eur Respir J 34(6):1364–1375CrossRefPubMedGoogle Scholar
  52. 52.
    Toh SM, Xiong L, Arias CA et al (2007) Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Mol Microbiol 64:1506–1514CrossRefPubMedGoogle Scholar
  53. 53.
    Toltzis P, Dul MJ, Hoyen C et al (2002) The effect of antibiotic rotation on colonization with antibiotic-resistant bacilli in a neonatal intensive care unit. Pediatrics 110(4):707–711CrossRefPubMedGoogle Scholar
  54. 54.
    Weber DJ, Rutala WA, Sickbert-Bennett EE et al (2007) Microbiology of ventilator-associated pneumonia compared with that of hospital-acquired pneumonia. Infect Control Hosp Epidemiol 28:825CrossRefPubMedGoogle Scholar
  55. 55.
    Wiedemann B, Heisig P (1994) Mechanisms of quinolone resistance. Infection 22(Suppl 2):S73–S79CrossRefPubMedGoogle Scholar
  56. 56.
    Wood MJ (1996) The comparative efficacy and safety of teicoplanin and vancomycin. J Antimicrob Chemother 37:209–222CrossRefPubMedGoogle Scholar
  57. 57.
    Wunderink RG, Rello J, Cammarata SK et al (2003) Linezolid vs vancomycin: analysis of two double-blind studies of patients with methicillin-resistant Staphylococcus aureus nosocomial pneumonia. Chest 124:1789–1797CrossRefPubMedGoogle Scholar
  58. 58.
    Zimhony O, Chmelnitsky I, Bardenstein R et al (2006) Endocarditis caused by extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae: emergence of resistance to ciprofloxacin and piperacillin-tazobactam during treatment despite initial susceptibility. Antimicrob Agents Chemother 50:3179–3182CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • S. Gatermann
    • 1
  • I.F. Chaberny
    • 2
  • M. Pletz
    • 3
  • B. Schaaf
    • 4
  1. 1.Abteilung für Medizinische MikrobiologieRuhr-Universiät BochumBochumDeutschland
  2. 2.Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Arbeitsbereich KrankenhaushygieneMedizinische Hochschule HannoverHannoverDeutschland
  3. 3.Klinik für PneumologieMedizinische Hochschule HannoverHannoverDeutschland
  4. 4.Medizinische Klinik Nord (Pneumologie, Infektiologie, Intensivmedizin)Klinikum Dortmund gGmbHDortmundDeutschland

Personalised recommendations