Advertisement

Der Pneumologe

, Volume 3, Issue 4, pp 266–272 | Cite as

Immunologie der Tuberkulose

  • L. P. NicodEmail author
Leitthema

Zusammenfassung

Die Infektion mit M. tuberculosis (Mtb) ist nach wie vor weit verbreitete, aber nur bei bestimmten Menschen wird aus der primären Infektion eine Erkrankung. Nur Patienten mit einer Immunschwäche oder einer reduzierten Immunität erkranken. Das sind pro Jahr weltweit ca. 8–10 Mio. Menschen. Ein gutes Verständnis der Mtb-Immunität ist wichtig, wenn man Mtb verhindern, Immunmodulatoren für bestimmte Krankheiten einsetzen oder neue Impfstoffe auf der Grundlage des durch die Entschlüsselung der Genomstruktur von Mtb gewonnenen Wissens entwickeln will.

Schlüsselwörter

Tuberkulose Immunologie Mtb-Immunität Immunmodulatoren Impfstoffe 

Immunology of tuberculosis

Abstract

Infection with M. tuberculosis (Mtb) remains a widely spread but only some individuals will have the disease beyond the primary infection. Only those who have an immune defect or a reduced immunity will develop the disease. This amounts to 8–10 million individuals per year worldwide. A good comprehension of Mtb immunity is therefore important for those who want to prevent Mtb, for those using immunomodulators for various diseases, or for those who intend to develop new vaccines using the knowledge derived since the unraveling of the genomic structure of Mtb.

Keywords

Tuberculosis Immunology Mtb immunity Immunomodulators Vaccines 

Notes

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Literatur

  1. 1.
    Beck JM (2005) The immunocompromised host. HIV Infection. Proc Am Thorac Soc 2: 423–427CrossRefPubMedGoogle Scholar
  2. 2.
    Behr MA, Wilson MA, Gill WP et al. (1999) Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284: 1520–1523CrossRefPubMedGoogle Scholar
  3. 3.
    Calmette A (1936) L’infection bacillaire et la tuberculose chez l’homme et chez les animaux. Masson et Cie, ParisGoogle Scholar
  4. 4.
    Cole ST, Brosch R, Parkhill J et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537–544CrossRefPubMedGoogle Scholar
  5. 5.
    Collins FM (1982) The immunology of tuberculosis. Am Rev Respir Dis 125: 42–49PubMedGoogle Scholar
  6. 6.
    de Valliere S, Abate G, Blazevic A et al. (2005) Enhancement of innate and cell-mediated immunity by antimycobacterial antibodies. Infect Immun 73(10): 6711–6720CrossRefPubMedGoogle Scholar
  7. 7.
    Dreher D, Kok M, Pechère JC, Nicod LP (2000) New strategies against an old plague: genetically engineered tuberculosis vaccines. Schweiz Med Wochenschr 13: 1925–1929Google Scholar
  8. 8.
    Dye C, Scheele S, Dolin P et al. (1999) Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282: 677–686CrossRefPubMedGoogle Scholar
  9. 9.
    Flynn JL, Chan J (2001) Immunology of tuberculosis. Ann Rev Immunol 19: 93–129CrossRefPubMedGoogle Scholar
  10. 10.
    Fortis C, Poli G (2005) Dendritic cells and natural killer cells in the pathogenesis of HIV infection. Immunol Res 33(1): 1–21CrossRefPubMedGoogle Scholar
  11. 11.
    Gagneux S, DeRiemer K, Van T et al. (2006) Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103: 2869–2873CrossRefPubMedGoogle Scholar
  12. 12.
    Geijtenbeek TB, Kwon DS, Torensma R et al. (2000) DC-SIGN, dendritic cell-specific HIV1-binding protein that enhances trans-infection of T cells. Cell 100: 587–597CrossRefPubMedGoogle Scholar
  13. 13.
    Gerosa F, B. Baldan-Guerra, C. Nisii, V. Marchesini, G. Carra, and G. Trinchieri. (2002) Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 195: 327–333CrossRefPubMedGoogle Scholar
  14. 14.
    Guler R, Olleros ML, Vesin D et al. (2005) Differential effects of total and partial neutralization of tumor necrosis factor on cell-mediated immunity to Mycobacterium bovis BCG infection. Infection Immunity 73: 3668–3676CrossRefPubMedGoogle Scholar
  15. 15.
    Happel KI, Lockhard EA, Mason CM et al. (2005) Pulmonary interleukin-23 gene delivery increases local T-cell immunity and controls growth of Mycobacterium tuberculosis. Infect Immun 73: 5782–5788CrossRefPubMedGoogle Scholar
  16. 16.
    Ittam S, Lane HC, Witebsky FG et al. (1988) Host defense against Mycobacterium avium complex. J Clin Immunol 8: 234–243CrossRefPubMedGoogle Scholar
  17. 17.
    Kaufmann SHE, Cole ST, Mizrahi V et al. (2005) Mycobacterium tuberculosis and the host response. J Exp Med 201: 1693–1697CrossRefPubMedGoogle Scholar
  18. 18.
    Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106: 255–258CrossRefPubMedGoogle Scholar
  19. 19.
    Murray JF (1989) The white plague; down and out, up and coming? Am Rev Respir Dis 140: 1788–1795PubMedGoogle Scholar
  20. 20.
    Nakano H, Nagata T, Suda T et al. (2005) Immunization with dendritic cells retrovirally transduced with mycobacterial antigen 85A gene elicits the specific cellular immunity including cytotoxic T-lymphocyte activity specific to an epitope on antigen 85A. Vaccine 24: 2110–2119CrossRefPubMedGoogle Scholar
  21. 21.
    Orne IM (1988) Characteristics and specificity of acquired immunologic memory to Mycobacterium tuberculosis is mediated by human monocyte complement receptros and complement component C3. J Immunol 140: 3589–3593PubMedGoogle Scholar
  22. 22.
    Pan H, Yan BS, Rojas M et al. (2005) Ipr1 gene mediates innate immunity to tuberculosis. Nature 434: 767–772CrossRefPubMedGoogle Scholar
  23. 23.
    Reed MB, Domenech P, Manca C et al. (2004) A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431: 84–87CrossRefPubMedGoogle Scholar
  24. 24.
    Roura-Mira C, Wang L, Cheg TY et al. (2005) Mycobacterum tuberculosis regulates CD1 antigen presentation pathways trough TLR-2. J Immunol 175(3): 1758–1766PubMedGoogle Scholar
  25. 25.
    Schaible UE, Winau F, Sieling PA et al. (2003) Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat Med 9: 1039–1046CrossRefPubMedGoogle Scholar
  26. 26.
    Selwyn P, Hartel D, Lewis V et al. (1989) A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N Engl J Med 320: 545–550PubMedGoogle Scholar
  27. 27.
    Stegelmann F, Bastian M, Swoboda K et al. (2005) Coordinate expression of CC chemokine ligand 5, granulysin, and perforin in CD8+ T cells provides a host defense mechanism against Mycobacterium tuberculosis. J Immunol 175 (11): 7474–7483PubMedGoogle Scholar
  28. 28.
    Tailleux L, Schwartz O, Herrmann JL et al. (2003) DC-SIGN is the major mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197: 121–127CrossRefPubMedGoogle Scholar
  29. 29.
    Tian T, Woodworth J, Skold M, Behar SM (2005) In vivo depletion of CD11+ cells delays the CD4+ cell response to Mycobacterium tuberculosis and exacerbates the outcome of infection. J. Immunol 175(5): 3268–3272Google Scholar
  30. 30.
    Yim JJ, Lee HW, Lee HS et al. (2006) The association between micro satellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun 7: 150–155CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang R, Zheng X, Li B et al. (2006) Human NK cells positively regulate γδ T cells in response to mycobacterium tuberculosis 1. J Immunol 176: 2610–2616PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2006

Authors and Affiliations

  1. 1.Klinik und Poliklinik für PneumologieInselspitalBernSchweiz

Personalised recommendations