Excellent quality microchannels for rapid microdevice prototyping: direct CO2 laser writing with efficient chemical postprocessing

  • Matheus J. T. VargasEmail author
  • Michel Nieuwoudt
  • Rui Ming Yong
  • Frederique Vanholsbeeck
  • David E. WilliamsEmail author
  • M. Cather SimpsonEmail author
Research Paper


Rapid, simple microchannel prototyping is critical for the development of modern microfluidic devices and platforms. Laser cutting (ablation) using a commercially available continuous wave (CW) CO2 laser followed by thermal bonding is one of the most common approaches for prototyping in thermoplastics such as polymethyl methacrylate (PMMA). However, this technique suffers from poorly controlled channel quality, inconsistent results from solvent-based post-processing, and inconsistency of thermal bonding. We have overcome these challenges through a systematic study of channel ablation in PMMA using a CW CO2 laser. A new solvent treatment approach results in clearly improved microchannel quality and processing consistency, with negligible residual solvent. Thermal bonding of the processed material showed fourfold increase in bonding strength with full retention of PMMA’s favourable optical clarity. As proof of concept, a high-quality three-layered microfluidic prototype is fabricated with this new method and its performance demonstrated.



We acknowledge the New Zealand Ministry of Business, Innovation and Employment (UOAX1202) and Auckland UniServices for funding support. We also thank Orbis Diagnostics for the Ph.D. Fellowship funding to M. J. T. V.

Supplementary material

10404_2019_2291_MOESM1_ESM.docx (566 kb)
Supplementary material 1 (DOCX 565 kb)


  1. Aghvami SA, Opathalage A, Zhang ZK et al (2017) Rapid prototyping of cyclic olefin copolymer (COC) microfluidic devices. Sens Actuators B Chem 247:940–949. CrossRefGoogle Scholar
  2. Asproulis N, Drikakis D (2010) Boundary slip dependency on surface stiffness. Phys Rev E Stat Nonlinear Soft Matter Phys. CrossRefGoogle Scholar
  3. Asproulis N, Drikakis D (2011) Wall-mass effects on hydrodynamic boundary slip. Phys Rev E 84:31504. CrossRefGoogle Scholar
  4. Attia UM, Marson S, Alcock JR (2009) Micro-injection moulding of polymer microfluidic devices. Microfluid Nanofluidics 7:1–28CrossRefGoogle Scholar
  5. Bhagat AAS, Bow H, Hou HW et al (2010) Microfluidics for cell separation. Med Biol Eng Comput 48:999–1014CrossRefGoogle Scholar
  6. Boone TD, Fan ZH, Hooper HH et al (2002) Plastic advances microfluidic devices. Anal Chem 74:78A–86A. CrossRefGoogle Scholar
  7. Brydson J, Ebrary Inc (1999) Plastics materials, 7th edn. Butterworth-Heinemann, Oxford, BostonGoogle Scholar
  8. Chen Z, Gao Y, Su R et al (2003) Fabrication and characterization of poly(methyl methacrylate) microchannels by in situ polymerization with a novel metal template. Electrophoresis 24:3246–3252. CrossRefGoogle Scholar
  9. Chen Y, Zhang L, Chen G (2008) Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips. Electrophoresis 29:1801–1814CrossRefGoogle Scholar
  10. Cheng JY, Wei CW, Hsu KH, Young TH (2004) Direct-write laser micromachining and universal surface modification of PMMA for device development. Sens Actuators B Chem 99:186–196. CrossRefGoogle Scholar
  11. Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12:2118. CrossRefGoogle Scholar
  12. Chung CK, Lin YC, Huang GR (2005) Bulge formation and improvement of the polymer in CO2 laser micromachining. J Micromech Microeng 15:1878–1884. CrossRefGoogle Scholar
  13. Focke M, Kosse D, Al-Bamerni D et al (2011) Microthermoforming of microfluidic substrates by soft lithography (µTSL): optimization using design of experiments. J Micromech Microeng 21:115002. CrossRefGoogle Scholar
  14. Gabriel EFM, Coltro WKT, Garcia CD (2014) Fast and versatile fabrication of PMMA microchip electrophoretic devices by laser engraving. Electrophoresis 35:2325–2332. CrossRefGoogle Scholar
  15. Golding CG, Lamboo LL, Beniac DR, Booth TF (2016) The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci Rep 6:26516. CrossRefGoogle Scholar
  16. Gomez FA (2013) The future of microfluidic point-of-care diagnostic devices. Bioanalysis 5:1–3. CrossRefGoogle Scholar
  17. Gómez-de Pedro S, Berenguel-Alonso M, Couceiro P et al (2017) Automatic microfluidic system to perform multi-step magneto-biochemical assays. Sens Actuators B Chem 245:477–483. CrossRefGoogle Scholar
  18. Hansen CM (ed) (2000) Solubility parameters—an introduction. In: Hansen solubility parameters: a user’s handbook. CRC Press, Boca Raton, Fl, USA, pp 1–24Google Scholar
  19. Haynes WM (2012) CRC handbook of chemistry and physics, 93rd ednGoogle Scholar
  20. Hong TF, Ju WJ, Wu MC et al (2010) Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser. Microfluid Nanofluidics 9:1125–1133. CrossRefGoogle Scholar
  21. Kant R, Gupta A, Bhattacharya S (2015) Studies on CO2 laser micromachining on PMMA to fabricate micro channel for microfluidic applications. In: Joshi NS, Dixit SU (eds) Lasers based manufacturing: 5th international and 26th all india manufacturing technology, design and research conference, AIMTDR 2014. Springer India, New Delhi, pp 221–238CrossRefGoogle Scholar
  22. Klank H, Kutter JP, Geschke O (2002) CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2:242–246. CrossRefGoogle Scholar
  23. Kwei TK (1992) CRC handbook of polymer-liquid interaction parameters and solubility parameters by Allan F M Barton, CRC Press (1990), ISBN 0-8493-3544-2, hard cover, 771 pp., price not available. Polym Adv Technol 3:47. CrossRefGoogle Scholar
  24. Lefèvre F, Juneau P, Izquierdo R (2015) Integration of fluorescence sensors using organic optoelectronic components for microfluidic platform. Sens Actuators B Chem 221:1314–1320. CrossRefGoogle Scholar
  25. Li SW, Xu JH, Wang YJ et al (2008) Low-temperature bonding of poly-(methyl methacrylate) microfluidic devices under an ultrasonic field. J Micromech Microeng 19:015035. CrossRefGoogle Scholar
  26. Lin L (2003) Thermal challenges in MEMS applications: phase change phenomena and thermal bonding processes. Microelectron J 35(3):179–185CrossRefGoogle Scholar
  27. Lippok N, Coen S, Nielsen P, Vanholsbeeck F (2012) Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform. Opt Express 20:23398. CrossRefGoogle Scholar
  28. Majer V, Svoboda V, Kehiaian HV (1985) Enthalpies of vaporization of organic compounds: a critical review and data compilation. Blackwell Scientific, OxfordGoogle Scholar
  29. Malek CGK (2006) Laser processing for bio-microfluidics applications (part II). Anal Bioanal Chem 385:1362–1369CrossRefGoogle Scholar
  30. Miller-Chou BA, Koenig JL (2003) A review of polymer dissolution. Prog Polym Sci 28:1223–1270CrossRefGoogle Scholar
  31. Nayak NC, Lam YC, Yue CY, Sinha AT (2008) CO2-laser micromachining of PMMA: the effect of polymer molecular weight. J Micromech Microeng 18:095020. CrossRefGoogle Scholar
  32. Ng SH, Tjeung RT, Wang ZF et al (2008) Thermally activated solvent bonding of polymers. Microsyst Technol 14:753–759. CrossRefGoogle Scholar
  33. Nikcevic I, Lee SH, Piruska A et al (2007) Characterization and performance of injection molded poly(methylmethacrylate) microchips for capillary electrophoresis. J Chromatogr A 1154:444–453. CrossRefGoogle Scholar
  34. Ogilvie IRG, Sieben VJ, Floquet CFA et al (2010) Solvent processing of PMMA and COC chips for bonding devices with optical quality surfaces. In: 14th international conference on miniaturized systems for chemistry and life sciences, pp 1244–1246. CrossRefGoogle Scholar
  35. Ogończyk D, Wegrzyn J, Jankowski P et al (2010) Bonding of microfluidic devices fabricated in polycarbonate. Lab Chip 10:1324–1327. CrossRefGoogle Scholar
  36. Papanikolaou M, Frank M, Drikakis D (2016) Nanoflow over a fractal surface. Phys Fluids. CrossRefGoogle Scholar
  37. Papanikolaou M, Frank M, Drikakis D (2017) Effects of surface roughness on shear viscosity. Phys Rev E 95:33108. CrossRefGoogle Scholar
  38. Petropoulos GP, Pandazaras CN, Davim JP (2010) Surface texture characterization and evaluation related to machining. In: Davim JP (ed) Surface integrity in machining. Springer, London, pp 37–66CrossRefGoogle Scholar
  39. Prakash S, Kumar S (2015) Fabrication of microchannels on transparent PMMA using CO2 laser (10.6 μm) for microfluidic applications: an experimental investigation. Int J Precis Eng Manuf 16:361–366. CrossRefGoogle Scholar
  40. Romoli L, Tantussi G, Dini G (2011) Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices. Opt Lasers Eng 49:419–427. CrossRefGoogle Scholar
  41. Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189. CrossRefGoogle Scholar
  42. Said-Galiev ÉE, Nikitin LN (1992) Ablation of polymers and composites when exposed to CO2 laser radiation (review). Mech Compos Mater 28:97–114. CrossRefGoogle Scholar
  43. Snakenborg D, Klank H, Kutter JP (2004) Microstructure fabrication with a CO2 laser system. J Micromech Microeng 14:182–189. CrossRefGoogle Scholar
  44. Srinivasan R (1993) Ablation of polymethyl methacrylate films by pulsed (ns) ultraviolet and infrared (9.17 µm) lasers: a comparative study by ultrafast imaging. J Appl Phys 73:2743–2750. CrossRefGoogle Scholar
  45. Steigert J, Haeberle S, Brenner T et al (2007) Rapid prototyping of microfluidic chips in COC. J Micromech Microeng 17:333–341. CrossRefGoogle Scholar
  46. Streets AM, Huang Y (2013) Chip in a lab: microfluidics for next generation life science research. Biomicrofluidics. CrossRefGoogle Scholar
  47. Strohmeier O, Keller M, Schwemmer F et al (2015) Centrifugal microfluidic platforms: advanced unit operations and applications. Chem Soc Rev 44:6187–6229. CrossRefGoogle Scholar
  48. Tang M, Wang G, Kong SK, Ho HP (2016) A review of biomedical centrifugal microfluidic platforms. Micromachines. CrossRefGoogle Scholar
  49. Tsao CW, DeVoe DL (2009) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluidics 6:1–16CrossRefGoogle Scholar
  50. Urech L, Lippert T (2010) Photoablation of polymer materials. In: Allen NS (ed) Photochemistry and photophysics of polymer materials. Wiley, Hoboken, NJ, pp 541–568CrossRefGoogle Scholar
  51. Wlodkowic D, Darzynkiewicz Z (2011) Rise of the micromachines: microfluidics and the future of cytometryGoogle Scholar
  52. Zhu X, Liu G, Guo Y, Tian Y (2007) Study of PMMA thermal bonding. Microsyst Technol 13:403–407. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical SciencesThe University of AucklandAucklandNew Zealand
  2. 2.The Photon FactoryThe University of AucklandAucklandNew Zealand
  3. 3.MacDiarmid Institute for Advanced Materials and NanotechnologyWellingtonNew Zealand
  4. 4.The Dodd-Walls Centre for Photonic and Quantum IndustriesDunedinNew Zealand
  5. 5.Department of PhysicsThe University of AucklandAucklandNew Zealand

Personalised recommendations